

© GÉANT Association on behalf of the GN5-1 project. The research leading to these results has received funding from the European

Union’s Horizon Europe research and innovation programme under Grant Agreement No. 101100680 (GN5-1).

Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily

reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

20-12-2023

Milestone M7.4
Example Workflow Orchestrator with IMS and
IPAM Integration

Contractual Date: 30-12-2023

Actual Date: 20-12-2023

Grant Agreement No.: 101100680

Work Package: WP7

Task Item: Task 3

Nature of Milestone: Supporting Document, Specification]

Dissemination Level: PU (Public)

Lead Partner: SURF

Document ID: GN5-1-23-8a1761

Authors: Hans Trompert (SURF)

Abstract

A set of best common practices is explained using an orchestrator implementation based on the open source

Workflow Orchestrator. A basic set of NREN products and workflow are modelled for a Node, Core Link,

Customer port and L2VPN service, together with an IMS and IPAM integration using NetBox.

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

ii

Table of Contents

Executive Summary 1

1 Introduction 2

2 Example Orchestrator 3

2.1 Folder Layout 3

2.1.1 migrations/versions/schema 3

2.1.2 products/product_types 3

2.1.3 products/product_blocks 4

2.1.4 products/services 4

2.1.5 services 4

2.1.6 templates 4

2.1.7 translations 4

2.1.8 utils 4

2.1.9 workflows 4

2.1.10 shared 5

2.2 Main Application 5

2.3 Implemented Products 5

2.4 How to Use 6

2.4.1 Node 7

2.4.2 CoreLink 7

2.4.3 Port 7

2.4.4 L2VPN 7

3 Products 8

3.1 Product Types 8

3.2 Product Blocks 10

4 Workflows 13

4.1 Create Workflow 14

4.2 Modify Workflow 16

4.3 Terminate Workflow 17

4.4 Validate Workflows 18

5 Services 19

5.1 Subscription Descriptions 19

5.2 NetBox 20

5.2.1 Payload 20

5.2.2 Create 21

Contents

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

iii

5.2.3 Update 21

5.2.4 Get 22

5.2.5 Delete 22

5.2.6 Product Block to NetBox Object Mapping 23

Glossary 25

References 26

Table of Figures

Figure 1: Folder layout 3

Figure 2: Main application 5

Figure 3: Product block graph 6

Figure 4: Product domain model 8

Figure 5: Type definition 9

Figure 6: Subscription model registry 9

Figure 7: Product migration 10

Figure 8: Product block domain model 11

Figure 9: Serialisable property on domain model 12

Figure 10: Create workflow 14

Figure 11: Create workflow input form 14

Figure 12: Input validator 15

Figure 13: Choice definition 15

Figure 14: Create workflow summary form 15

Figure 15: Choice list definition 15

Figure 16: Modify workflow 16

Figure 17: Modify workflow input form 16

Figure 18: Modify workflow summary form 16

Figure 19: Terminate workflow 17

Figure 20: Terminate workflow input form 17

Figure 21: Validate workflow 18

Figure 22: Single dispatch description 19

Figure 23: Single dispatch description register 19

Figure 24: Single dispatch Netbox payload 20

Figure 25: Single dispatch Netbox payload register 20

Figure 26: Single dispatch Netbox create 21

Figure 27: Single dispatch Netbox create register 21

Figure 28: Netbox service create object 21

Figure 29: Single dispatch Netbox update 21

Figure 30: Netbox service update object 22

Figure 31: Netbox service get object(s) 22

file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102556
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102557
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102559
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102560
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102561
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102562
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102563
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102564
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102565
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102566
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102567
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102568
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102569
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102570
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102571
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102572
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102573
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102574
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102575
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102576
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102577
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102578
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102579
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102580
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102581
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102582
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102583
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102584
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102585
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102586

Contents

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

iv

Figure 32: Netbox service delete 22

Figure 33: Netbox service delete object 22

Figure 34: Node and core link type mapping 23

Figure 35: Node, port and L2VPN type mapping 24

file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102587
file:///C:/Users/francesca/Box/GEANT%20-%20PMO%20Team%20Working%20Folder/Technical%20Authors/Francesca/GN5/GN5-1/Milestones/WP7/M7.4/GN5-1_M7.4_Example-Workflow-Orchestrator-with-IMS-and-IPAM-Integration.docx%23_Toc160102588

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

1

Executive Summary

More and more NRENs are making use of the open-source Workflow Orchestrator (WFO) for the automation

and orchestration of their operational network procedures and flows of information. Each time an NREN creates

an orchestrator based on the WFO framework, custom integration code needs to be written that is business

specific. To support NRENs in helping each other write the needed code, facilitate collaboration towards the

further development of the framework, and achieve a set of standardised products and workflows, a set of best

common practices (BCP) are set forth in this document.

To start with, a standard folder layout is described to organise the custom integration code base. This helps in

quickly finding similar code in different implementations. To help illustrate the BCPs, an example orchestrator

has been implemented for a virtual NREN. The defined products model a network node, a core link between

nodes, a customer port, and a customer L2VPN service between those ports. For all products, the complete set

of create, modify, terminate, and validate workflows are implemented. Products and product blocks are

described in Domain Models that are designed to help the developer manage complex data models and interact

with the objects in a user-friendly way. The how and why for each step are described in detail.

Finally, the use of services is introduced. A service comprises collections of helper functions that deliver a service

to other parts of the code base. The common programming pattern of function overloading is used for the

implementation of a service, which can be as simple as the generation of a description based on the product

block domain model, or a complete interface to query, create, update or delete objects in an OSS or BSS. In the

example orchestrator, a service is implemented to interface with NetBox that is being used as IMS and IPAM.

The mappings between the product blocks and the objects in NetBox are described, and the interface is fully

implemented for the supported products.

The example orchestrator is fully functional and showcases how the WFO can be integrated with NetBox.

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

2

1 Introduction

To capture the Best Common Practices for implementing a network orchestrator using the Workflow

Orchestrator (WFO) software framework, an example orchestrator is implemented that can be found at

https://github.com/workfloworchestrator/example-orchestrator. This document can be used as a reading guide

for the code base that has been written, and will highlight many best practices and the reasoning behind them.

A basic understanding of the inner workings of the Workflow Orchestrator is assumed up to a level as discussed

in GN5-1 Milestone M7.3 Common NREN Network Service Product Models [GN5-1_M7.3] and explained in the

workshops that can be found on the Workflow Orchestrator website [WFO]. Basic knowledge in designing and

operating computer networks and an accompanying product portfolio and procedures is also assumed.

The products and workflows implemented in the example orchestrator are based on a simple fictional NREN

that has the following characteristics:

• The network consists of Provider and Provider Edge network nodes

• The network nodes are connected to each other through core links

• On top of this substrate a set of services like Internet Access, L3VPN and L2VPN are offered

• The Operations Support Systems (OSS) used are:

○ An IP Administration Management (IPAM) tool

○ A network Inventory Management System (IMS)

○ A Network Resource Manager (NRM) to provision the network

• There is no Business Support System (BSS) yet

This NREN decided on a phased introduction of automation in their organisation, only automating some of the

procedures and flows of information while leaving others unautomated for the time being, as follows:

• Automated administration and provisioning of:

○ Network nodes including loopback IP addresses

○ Core links in between network nodes including point-to-point IP addresses

○ Customer ports

○ Customer L2VPN’s

• Not automated administration and provisioning of:

○ Role, make and model of the network nodes

○ Sites where network nodes are installed

○ Customer services like Internet Access, L3VPN, …

○ Internet peering

[NetBox] is used as IMS and IPAM, and serves as the source of truth for the complete IP address administration

and physical and logical network infrastructure. It has a REST-based API that makes it easy to integrate with the

Workflow Orchestrator.

https://github.com/workfloworchestrator/example-orchestrator

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

3

2 Example Orchestrator

To automate the administration and provisioning of the nodes, core links, customer ports and L2VPN’s of the

virtual NREN, an orchestrator is implemented making use of the WFO framework.

2.1 Folder Layout

Creating an orchestrator based on the WFO framework needs custom integration code that is business specific.

This code can be organised as described below. A standard folder layout not only makes it easier to navigate

different orchestrator implementations, but also helps with keeping the code organised while the number of

products and associated workflows increases. The following layout is recommended and is, for example, also

being used in the WFO workshops and by many of the WFO users.

2.1.1 migrations/versions/schema

This is the default location used by Alembic to store migration files. Alembic is a lightweight database migration

tool that is part of [SQLAlchemy], and uses multiple HEADs to allow both the orchestrator-core package and the

implementation using this package to maintain its own list of migrations. Usually there is at least a migration file

for each new product plus associated workflows that are added to the implementation.

2.1.2 products/product_types

Each product has its own file, named after the product, that describes the product domain model in all its

lifecycle stages. For example, the filename for a L2VPN product would be l2vpn.py.

├── migrations
│ └── versions
│ └── schema
├── products
│ ├── product_blocks
│ ├── product_types
│ └── services
│ └── <service>
├── services
│ └── <service>
├── templates
├── translations
├── utils
└── workflows
 ├── <product>
 └── tasks

Figure 1: Folder layout

Example Orchestrator

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

4

2.1.3 products/product_blocks

Products can use one or more product blocks, and product blocks can be shared by different products. Every

product block that is defined, has a file with the same name as the product block, to store the domain models

in all its lifecycle stages. For example, the core port product block used by the core link product has a file called

core_port.py in this folder.

2.1.4 products/services

This is a collection of helper functions that deliver a service to product-related code, such as the generation of

descriptions, or payload for OSS/BSS API’s, for different product and product blocks. For example, the folder

products/services/netbox/ contains the NetBox API payload service.

2.1.5 services

Similar to the product services but with code base wide helper functions. For example, the folder

services/netbox/ contains the service that interfaces with the NetBox API.

2.1.6 templates

A list of product configuration templates, with a template per product. Based on a template, currently an

experimental feature, the WFO can generate skeleton code for the product and product block domain models,

all four types of workflows including input forms, registration of the product and workflows, and the

corresponding database migration.

2.1.7 translations

The translations for the WFO GUI for input form fields, subscriptions, subscription instances, and workflows.

2.1.8 utils

A collection of helper functions that are not directly related to the code base but are, for example, used to setup

a deployment environment or generate documentation.

2.1.9 workflows

Every product has a folder here, named after the product. Each folder contains the collection of workflows for

that product. Every workflow has its own file, and the filename is prefixed with the type of workflow. For

example, the folder workflows/port/ contains the workflows for the Port product, and the file

workflows/port/create_port.py contains the Port subscription create workflow.

Example Orchestrator

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

5

2.1.10 shared

Throughout the code base, shared folders are used that contain helper functions for that module and below. As

good coding practice, it is best to define the helper functions as locally as possible.

2.2 Main Application

The main application is as simple as shown below, and can be deployed by an ASGI server like [Uvicorn].

All other code is referenced by importing the products and workflows modules.

2.3 Implemented Products

In the product.product_types module the following products are defined:

• Node

• CoreLink

• Port

• L2vpn

And in the product.product_blocks module the following product blocks are defined:

• NodeBlock

• CoreLinkBlock

• CorePortBlock

• PortBlock

• SAPBlock

• VirtualCircuitBlock

Usually, the top-level product block of a product is named after the product, but this is not true for the top-level

product block of the L2VPN product. The more generic name VirtualCIrcuitBlock allows the reuse of this

product block by other services such as Internet Access and L3VPN.

The Service Access Point (SAP) product block SAPBlock is used to encapsulate transport-specific service

endpoint information, in our case Ethernet 802.1Q is used and the SAP holds the VLAN used on the indicated

port.

When this example orchestrator is deployed, it can create a growing graph of product blocks as is shown in

Figure 3 below.

from orchestrator import OrchestratorCore
from orchestrator.settings import AppSettings

import products
import workflows

app = OrchestratorCore(base_settings=AppSettings())

Figure 2: Main application

Example Orchestrator

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

6

Figure 3: Product block graph

2.4 How to Use

Human workflows for the delivery of products to customers are often comprehensive. To limit the scope of this

example orchestrator but still demonstrate the BCP when automating procedures, only inventory management

and provisioning are modelled. The implemented products and workflows are designed with particular

procedures in mind. For example, it is assumed that the following are administered in IMS outside of the

orchestrator:

• Sites

• Device roles

• Device Manufactures

• Device Types

• IPv4 and IPv6 prefix for node loopback addresses

• IPv4 and IPv6 prefix for core link addressing

Example Orchestrator

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

7

The Bootstrap Netbox task takes care of initialising NetBox with a default set of this information. For convenience,

a Wipe Netbox task is added as well that will remove all objects from NetBox again, including those created by

the different workflows. Task can be found in the orchestrator GUI under Tasks->New Task.

2.4.1 Node

The Node create workflow will read all configured, sites and device roles, and manufactures types, and allow

the user to choose appropriate values using dropdowns. The only things that needs to be entered by hand are a

unique name for the node and an optional description. This is enough to create a node subscription and

administer the node in the IMS.

Network interfaces are installed in the nodes by field engineers. The Node product has an “Update node

interfaces” workflow that will discover all interfaces on a physical node and will add or remove interfaces from

the IMS as needed. For this implementation, this workflow will always return a preconfigured list of 10 and 100

Gbit/s network interfaces. In a real world implementation, this could have been fetched from the network device

with SNMP, NETCONF, gNMI, or similar protocol. Only basic information on the interfaces is added, which make

them available to be used by the create workflows of the core link and customer port products.

There are variants of the node product that allow the creation of nodes for different manufactures, and only the

matching device types will be shown in the dropdown.

2.4.2 CoreLink

To build a core link, at least two node subscriptions should already exist. This is to satisfy the constraint that the

A and B side of the core link need to be different. On each node, there should be at least one port available that

matches the requested core link speed.

2.4.3 Port

To create a customer port, at least one node should exist with at least one free interface of the requested port

speed. The type of port can be untagged, tagged, or a link member, but note that currently only one network

service product is implemented and that product only supports tagged ports.

2.4.4 L2VPN

To create a L2VPN services for a customer, at least two customer ports should exist, and every port can only be

used once in the same L2VPN. This product is only supported on tagged interfaces, and VLAN retagging is not

supported.

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

8

3 Products

Products are described in Domain Models that are designed to help the developer manage complex subscription

models and interact with the objects in a user-friendly way. Domain models use [Pydantic] with some additional

functionality to dynamically cast variables from the database, where they are stored as a string, to their correct

type in Python at runtime. Pydantic uses Python type hints to validate that the correct type is assigned. The use

of typing, when used together with type checkers, already helps to make the code more robust, and now

everything assigned to the model is also checked at runtime which greatly improves reliability.

The definition of a product is divided into describing the product type and the product blocks. The product type

describes the fixed inputs and the top-level product blocks. The fixed inputs are used to differentiate between

variants of the same product, for example the speed of a network port. There is always at least one top level

product block that contains the resource types to administer the customer facing input. Besides resource types,

the product blocks usually also contain links to other product blocks. If a fixed input needs a custom type, then

it is defined here together with fixed input definition.

3.1 Product Types

The product types in the code are upper camel cased, like all other type definitions. Per default, the product

type is declared for the inactive, provisioning and active lifecycle states, and the product type name is suffixed

with the state if the lifecycle is not active. Usually, the lifecycle state starts with inactive, and then transitions

through provisioning to active, and finally to terminated. During its life, the subscription, an instantiation of a

product for a particular customer, can transition from active to provisioning and back again many times, before

it ends up terminated. The terminated state does not have its own type definition.

As can be seen in the above example, the inactive product type definition is subclassed from SubscriptionModel,

and the following definitions are subclassed from the previous one. This product has one fixed input called speed

and one port product block (see below about naming). Note that the port product block matches the lifecycle of

the product, for example, the PortInactive product has a PortBlockInactive product block, but it is totally fine to

use product blocks from different lifecycle states if that suits your use case.

class PortInactive(SubscriptionModel, is_base=True):
 speed: PortSpeed
 port: PortBlockInactive

class PortProvisioning(PortInactive,
lifecycle=[SubscriptionLifecycle.PROVISIONING]):
 speed: PortSpeed
 port: PortBlockProvisioning

class Port(PortProvisioning, lifecycle=[SubscriptionLifecycle.ACTIVE]):
 speed: PortSpeed
 port: PortBlock

Figure 4: Product domain model

Products

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

9

Because a port is only available in a limited number of speeds, a separate type is declared with the allowed

values, see below.

This type is not only used to ensure that the speed fixed input can only take these values but also in user input

forms to limit the choices, and in the database migration to register the speed variant of this product.

Products need to be registered in two places. All product variants have to be added to the

SUBSCRIPTION_MODEL_REGISTRY, in products/__init__.py, as shown below.

All variants also have to be entered into the database using a migration. The migration uses the create helper

function from orchestrator.migrations.helpers that takes the following dictionary as an argument, as

shown below. Note that the name of the product and the product type need to match with the subscription

model registry.

from enum import IntEnum

class PortSpeed(IntEnum):
 _1000 = 1000
 _10000 = 10000
 _40000 = 40000
 _100000 = 100000
 _400000 = 400000

from orchestrator.domain import SUBSCRIPTION_MODEL_REGISTRY
from products.product_types.core_link import CoreLink

SUBSCRIPTION_MODEL_REGISTRY.update(
 {
 "core link 10G": CoreLink,
 "core link 100G": CoreLink,
 }
)

Figure 5: Type definition

Figure 6: Subscription model registry

Products

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

10

3.2 Product Blocks

Like product types, the product blocks are declared for the inactive, provisioning and active lifecycle states. The

names of product blocks are suffixed with the word Block, to clearly distinguish them from the product types,

and again suffixed by the state if the lifecycle is not active.

Every time a subscription is transitioned from one lifecycle to another, an automatic check is performed to

ensure that resource types that are not optional are in fact present on that instantiation of the product block.

This safeguards for incomplete administration for that lifecycle state. The resource types on an inactive product

block are usually all optional to allow the creation of an empty product block instance. All resource types that

are used to hold the user input for the subscription is stored using resource types that are no longer optional in

the provisioning lifecycle state. All resource types used to store information that is generated while provisioning

the subscription is stored using resource types that are optional while provisioning but are no longer optional

for the active lifecycle state. Resource types that are still optional in the active state are used to store non-

mandatory information.

from orchestrator.migrations.helpers import create

new_products = {
 "products": {
 "core link 10G": {
 "product_id": uuid4(),
 "product_type": "CoreLink",
 "description": "Core link",
 "tag": "CORE_LINK",
 "status": "active",
 "product_blocks": [
 "CoreLink",
 "CorePort",
],
 "fixed_inputs": {
 "speed": CoreLinkSpeed._10000.value,
 },
 },

def upgrade() -> None:
 conn = op.get_bind()
 create(conn, new_products)

Figure 7: Product migration

Products

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

11

In the simplified node product block shown above, the type and the name of the node are supplied by the user

and stored on the NodeBlockInactive. Then, the subscription transitions to Provisioning and a check is performed

to ensure that both pieces of information are present on the product block. During the provisioning phase the

node is administered in IMS and the handle to that information is stored on the NodeBlockProvsioning. Next,

the node is provisioned in the NRM and the handle is also stored. If both of these two actions were successful,

the subscription is transitioned to Active and it is checked that the type and node name, and the IMS and NRM

ID, are present on the product block. The description of the node remains optional, even in the active state.

These checks ensure that information that is necessary for a particular state is present so that the actions that

are performed in that state do not fail.

Sometimes there are resource types that depend on information stored on other product blocks, even on linked

product blocks that do not belong to the same subscription. This kind of types need to be calculated at run time

so that they include the most recent information. Consider the following example of a (stripped down version)

of a port and node product block, and a title for the port block that is generated dynamically.

A @serializable_property has been added that will dynamically render the title of the port product block. Even

after a modify workflow has been run to change the node name on the node subscription, the title of the port

block will always be up to date. The title can be referenced as any other resource type using

subscription.port.title. This is not a random example, the title of a product block is used by the orchestrator GUI

while displaying detailed subscription information.

class NodeBlockInactive(ProductBlockModel, product_block_name="Node"):
 type_id: int | None = None
 node_name: str | None = None
 ims_id: int | None = None
 nrm_id: int | None = None
 node_description: str | None = None

class NodeBlockProvisioning(
 NodeBlockInactive, lifecycle=[SubscriptionLifecycle.PROVISIONING]
):
 type_id: int
 node_name: str
 ims_id: int | None = None
 nrm_id: int | None = None
 node_description: str | None = None

class NodeBlock(NodeBlockProvisioning,
lifecycle=[SubscriptionLifecycle.ACTIVE]):
 type_id: int
 node_name: str
 ims_id: int
 nrm_id: int
 node_description: str | None = None

Figure 8: Product block domain model

Products

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

12

class NodeBlock(NodeBlockProvisioning, lifecycle=[SubscriptionLifecycle.ACTIVE]):
 node_name: str

class PortBlock(PortBlockProvisioning, lifecycle=[SubscriptionLifecycle.ACTIVE]):
 port_name: str
 node: NodeBlock

 @serializable_property
 def title(self) -> str:
 return f"{self.port_name} on {self.node.node_name}"

class Port(PortProvisioning, lifecycle=[SubscriptionLifecycle.ACTIVE]):
 port: PortBlock

Figure 9: Serialisable property on domain model

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

13

4 Workflows

Four types of workflows are defined, including three that are lifecycle related to create, modify and terminate

subscriptions, and fourth to validate subscriptions against the OSS and BSS. The decorators @create_workflow,

@modify_workflow, @terminate_workflow, and @validate_workflow are used to define the different

types of workflow, and the @step decorator is used to define workflow steps that can be used in any type of

workflow.

Information between workflow steps is passed using State, which is nothing more than a collection of key/value

pairs, represented in Python by a Dict, with string keys and arbitrary values. Between steps the State is

serialised to JSON and stored in the database. The step decorator is used to turn a function into a workflow step,

all arguments to the step function will automatically be initialised with the value from the matching key in the

State. In turn the step function will return a Dict of new and/or modified key/value pairs that will be merged

into the State to be consumed by the next step. The serialisation and deserialisation between JSON and the

indicated Python types is done automatically, which is why it is important to correctly type the step function

parameters.

The input form is where a user can enter the details for a subscription on a certain product at the start of the

workflow, or can enter additional information during the workflow. The input forms are dynamically generated

in the backend and use Pydantic to define the type of the input fields. This also allows for the definition of input

validations. Input forms are (optionally) used by all types of workflows to gather and validate user input. It is

possible to have more than one input form, with the ability to navigate back and forth between the forms, until

the last input form is submitted, and the first (or next) step of the workflow is started. This allows for on-the-fly

generation of input forms, where the content of the next form(s) depends on the input of the previous form(s).

For example, when creating a core link between two nodes, a first input form could ask to choose two nodes

from a list of active nodes, and the second form will present two lists with ports on these two nodes to choose

from.

While developing a new product, the workflows can be written in any order. Those who use a test-driven

development style will probably start with the validate workflow but in general the create workflow will usually

be used to start with as it is helpful to discuss the product model (the information involved) and the workflows

(the procedures involved) with stakeholders to clarify requirements. Once the minimal viable create workflow

is implemented, the validate workflow can be written to ensure that all information is administered correctly in

all touched OSS and BSS and is not changed again by hand because human workflows were not yet correctly

adapted. Then, after the terminate workflow is written, the complete lifecycle of the product can be tested.

Even when the modify workflow is not implemented, a change to a subscription can be carried out by

terminating the subscription and creating it again with the modified input. Finally, the modify workflow is

implemented to allow changes to a subscription with minimal or no impact to the customer.

Workflows

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

14

4.1 Create Workflow

A create workflow needs an initial input form generator and defines the steps to create a subscription on a

product. The @create_workflow decorator adds some additional steps to the workflow that are always part

of a create workflow. The steps of a create workflow in general follow the same pattern, as described below

using the create node workflow as an example.

1. Collect input from user (initial_input_form)

2. Instantiate subscription (construct_node_model):

a. Create inactive subscription model

b. Assign user input to subscription

c. Transition to subscription to provisioning

3. Register create process for this subscription (store_process_subscription)

4. Interact with OSS and/or BSS, in this example:

a. Administer subscription in IMS (create_node_in ims)

b. Reserve IP addresses in IPAM (reserve_loopback_addresses)

c. Provision subscription in the network (provision_node_in_nrm)

5. Transition subscription to active and ‘in sync’ (@create_workflow)

As long as every step remains as idempotent as possible, the work can be divided over fewer or more steps as

desired.

The input form is created by subclassing the FormPage and adding the input fields together with the type and

indication if they are optional or not. Additional form settings can be changed via the Config class, such as for

example the title of the form page.

@create_workflow("Create node", initial_input_form=initial_input_form_generator)
def create_node() -> StepList:
 return (
 begin
 >> construct_node_model
 >> store_process_subscription(Target.CREATE)
 >> create_node_in_ims
 >> reserve_loopback_addresses
 >> provision_node_in_nrm
)

class CreateNodeForm(FormPage):
 class Config:
 title = product_name

 role_id: node_role_selector(node_type)
 node_name: str
 node_description: str | None

Figure 10: Create workflow

Figure 11: Create workflow input form

Workflows

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

15

By default, Pydantic validates the input against the specified type and will signal missing input fields. But custom

validations can also be added, like a check on the validity of the entered VLAN ID as shown below.

The node role is defined as type Choice and will be rendered as a dropdown that is filled with a mapping between

the role IDs and names as defined in NetBox.

When more than one item needs to be selected, a choice_list() can be used to specify the constraints, for

example to select multiple ports for a L2VPN:

Finally, a summary form is shown with the user supplied values. When a value appears to be incorrect, the user

can go back to the previous form to correct the mistake, otherwise, when the form is submitted, the workflow

is kicked off.

@validator("vlan", allow_reuse=True)
def valid_vlan(cls, v: int):
 if v < 2 or v > 4094:
 raise AssertionError("VLAN ID must be between 2 and 4094 (inclusive)")
 return v

def node_role_selector() -> Choice:
 roles = {str(role.id): role.name for role in netbox.get_device_roles()}
 return Choice("RolesEnum", zip(roles.keys(), roles.items()))

choice = Choice("PortsEnum", zip(ports.keys(), ports.items()))
return choice_list(choice, min_items=2, max_items=8, unique_items=True)

summary_fields = ["role_id", "node_name", "node_description"]
yield from create_summary_form(user_input_dict, product_name, summary_fields)

Figure 12: Input validator

Figure 13: Choice definition

Figure 15: Choice list definition

Figure 14: Create workflow summary form

Workflows

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

16

4.2 Modify Workflow

A modify workflow also follows a general pattern, as described below. The @modify_workflow decorator adds

some additional steps to the workflow that are always needed.

1. Collect input from user (initial_input_form)

2. Necessary subscription administration (@modify_workflow):

a. Register modify process for this subscription

b. Set subscription ‘out of sync’ to prevent the start of other processes

3. Transition subscription to Provisioning (set_status)

4. Update subscription with the user input

5. Interact with OSS and/or BSS, in this example

a. Update subscription in IMS (update_node_in ims)

b. Update subscription in NRM (update_node_in nrm)

6. Transition subscription to active (set_status)

7. Set subscription ‘in sync’ (@modify_workflow)

Like the create workflow, the modify workflow also uses an initial input form but in this case only to collect the

values from the user that need to be changed. Usually, only a subset of the values may be changed. To assist the

user, additional values can be shown in the input form using read-only fields. In the example below, the name

of the node is shown but cannot be changed, the node status can be changed and the dropdown is set to the

current node status, and the node description is still optional.

After a summary form has been shown that lists the current and the new values, the modify workflow is started.

@modify_workflow("Modify node", initial_input_form=initial_input_form_generator)
def modify_node() -> StepList:
 return (
 begin
 >> set_status(SubscriptionLifecycle.PROVISIONING)
 >> update_subscription
 >> update_node_in_ims
 >> update_node_in_nrm
 >> set_status(SubscriptionLifecycle.ACTIVE)
)

class ModifyNodeForm(FormPage):
 node_name: str = ReadOnlyField(node.node_name)
 node_status: node_status_selector() = node.node_status
 node_description: str | None = node.node_description

summary_fields = ["node_status", "node_name", "node_description"]
yield from modify_summary_form(user_input_dict, subscription.node, summary_fields)

Figure 16: Modify workflow

Figure 17: Modify workflow input form
Figure 18: Modify workflow summary form

Workflows

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

17

4.3 Terminate Workflow

At the end of the subscription lifecycle, the terminate workflow updates all OSS and BSS accordingly, and the

@terminate_workflow decorator takes care of most of the necessary subscription administration.

1. Show subscription details and ask user to confirm termination (initial_input_form)

2. Necessary subscription administration (@terminate_workflow):

a. Register terminate process for this subscription

b. Set subscription ‘out of sync’ to prevent the start of other processes

3. Get subscription and add information for following steps to the State (load_initial_state)

4. Interact with OSS and/or BSS, in this example

a. Delete node in IMS (delete_node_in ims)

b. Deprovision node in NRM (deprovision_node_in_nrm)

5. Necessary subscription administration (@terminate_workflow)

a. Transition subscription to terminated

b. Set subscription ‘in sync’

The initial input form for the terminate workflow is very simple, it only has to show the details of the subscription:

@terminate_workflow("Terminate node", initial_input_form=initial_input_form_generator)
def terminate_node() -> StepList:
 return (
 begin
 >> load_initial_state
 >> delete_node_from_ims
 >> deprovision_node_in_nrm

class TerminateForm(FormPage):
 subscription_id: DisplaySubscription = subscription_id

Figure 19: Terminate workflow

Figure 20: Terminate workflow input form

Workflows

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

18

4.4 Validate Workflows

And finally, the validate workflow, used to check if the information in all OSS and BSS is still the same with the

information in the subscription. One way to do this is to reconstruct the payload sent to the external system

using information queried from that system, and compare this with the payload that would have been sent by

generating a payload based on the current state of the subscription. The @validate_workflow decorator

takes care of necessary subscription administration. There is no initial input form for this type of workflow.

1. Necessary subscription administration (@validate_workflow):

a. Register validate process for this subscription

b. Set subscription ‘out of sync’, even when subscription is already out of sync

2. One or more steps to validate the subscription against all OSS and BSS:

a. Validate subscription against IMS:

i. validate_l2vpn_in_ims

ii. validate_l2vpn_terminations_in_ims

iii. validate_vlans_on_ports_in_ims

3. Set subscription ‘in sync’ again (@validate_workflow)

When one of the validation steps fails, the subscription will stay ‘out of sync’, prohibiting other workflows from

being started for this subscription. The failed validation step can be retried as many times as needed until it

succeeds, which finally will set the subscription ‘in sync’ and allow other workflows to be started again. This

safeguards workflows from being started for subscription with mismatching information in OSS and BSS which

would make them likely to fail.

It is better to limit the number of validations done in each step. This will make it easier to see any discrepancies

found at a glance and will make a retry of any failed steps much faster. A commonly used strategy is to use

separate steps for each OSS and BSS, and separate steps per external system for each payload that was sent.

This can be done by comparing a payload created for a product block in the orchestrator with a payload that is

generated by querying the external system.

As well as performing validations per subscription, is also possible to validate other requirements. For example,

to make sure that there are no L2VPNs administered in IMS that do not have a matching subscription in the

orchestrator, a task (a workflow with Target.SYSTEM) can be written that will retrieve a list of all L2VPNs from

IMS and compare it against a list of all L2VPN subscriptions from the orchestrator.

@validate_workflow("Validate l2vpn")
def validate_l2vpn() -> StepList:
 return (
 begin
 >> validate_l2vpn_in_ims
 >> validate_l2vpn_terminations_in_ims
 >> validate_vlans_on_ports_in_ims
)

Figure 21: Validate workflow

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

19

5 Services

Services are collections of helper functions that deliver a service to other parts of the code base. The common

programming pattern of function overloading is used for the implementation of the service. Function

overloading allows the use of multiple functions with the same name that will execute the right function based

on the type of the parameters. Python does not allow function overloading, but similar functionality can be

achieved through the use of the single dispatch feature that is part of the standard Python library.

First, an interface is defined and decorated with @singledispatch. Then different nameless functions can be

registered that implement that interface but for different parameters. Note that only the first parameter will be

taken into account to decide which one of the functions needs to be executed.

A helper function called single_dispatch_base() is used to keep track of all registered functions and the

type of their first argument. This allows for more informative error messages when the single dispatch function

is called with an unsupported parameter.

5.1 Subscription Descriptions

An example of a service is the generation of descriptions for subscriptions or product block instances, where the

description is generated based on the type of subscription or product block instance. In this way, there is one

place where every description is being generated, and changes to the way a description is generated will

automatically appear in all places where that description is being used.

The single dispatch description enables a first argument of type product model, product block model, or

subscription model, and will call the matching function.

Implementations of the description function can then be registered, such as the generation of a description for

a Node product, starting from the provisioning lifecycle state, that will show the name of the node followed by

the status of the node in parenthesis.

@singledispatch
def description(
 model: Union[ProductModel, ProductBlockModel, SubscriptionModel]
) -> str:
 return single_dispatch_base(description, model)

@description.register
def _(product: NodeProvisioning) -> str:
 return f"node {product.node.node_name} ({product.node.node_status})"

Figure 22: Single dispatch description

Figure 23: Single dispatch description register

Services

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

20

5.2 NetBox

The NetBox service is an interplay between several single dispatch functions, one to generate the payload for a

specific product block, and two others that create or modify an object in NetBox based on the type of payload.

The [Pynetbox] Python API client library is used to interface with NetBox.

5.2.1 Payload

The build_payload() single dispatch enables a first argument of type product block model, and a

subscription model parameter that is used when related information is needed from other parts of the

subscription. The specified return type is the base class that is used for all Netbox payload definitions.

When the payload is generated from a product block, the correct mapping is made between the types used in

the orchestrator and the types used in the OSS or BSS, for example, the Port product block maps on the Interface

type in NetBox, as can be seen below.

The values from the product block are copied to the appropriate place in the Interface payload. The interface

payload field names match those that are expected by NetBox. The speed of the interface is taken from the fixed

input speed with the same name on the subscription, and multiplication by 1000 is used to convert between

Mbit/s and Kbit/s.

@singledispatch
def build_payload(

model: ProductBlockModel, subscription: SubscriptionModel, **kwargs: Any
) -> netbox.NetboxPayload:
 return single_dispatch_base(build_payload, model)

@build_payload.register
def _(
 model: PortBlockProvisioning, subscription: SubscriptionModel
) -> netbox.InterfacePayload:
 return build_port_payload(model, subscription)

def build_port_payload(
 model: PortBlockProvisioning, subscription: SubscriptionModel
) -> netbox.InterfacePayload:
 return netbox.InterfacePayload(
 device=model.node.ims_id,
 name=model.port_name,
 type=model.port_type,
 tagged_vlans=model.vlan_ims_ids,
 mode="tagged" if model.port_mode == PortMode.TAGGED else "",
 description=model.port_description,
 enabled=model.enabled,
 speed=subscription.speed * 1000,
)

Figure 25: Single dispatch Netbox payload register

Figure 24: Single dispatch Netbox payload

Services

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

21

5.2.2 Create

To create an object in NetBox based on the type of Netbox payload, the single dispatch create() is used:

When registering the payload type, a keyword argument is used to inject the matching endpoint on the NetBox

API that is used to create the desired object. In the example below, it can be seen that interface payload is to be

used against the api.dcim.interfaces endpoint.

Finally, the payload is used to generate a dictionary as expected by the NetBox API endpoint. Note that the

names of the fields of the Netbox payload must match the names of the fields that are expected by the NetBox

API.

The ID of the object that is created in NetBox is returned so that it can be registered in the subscription for later

reference, e.g. when the object needs to be modified or deleted.

5.2.3 Update

The single dispatch update() is defined in a similar way, the only difference being that an additional argument

is used to specify the ID of the object that needs to be updated in NetBox.

@singledispatch
def create(payload: NetboxPayload, **kwargs: Any) -> int:
 return single_dispatch_base(create, payload)

@create.register
def _(payload: InterfacePayload, **kwargs: Any) -> int:
 return _create_object(payload, endpoint=api.dcim.interfaces)

def _create_object(payload: NetboxPayload, endpoint: Endpoint) -> int:
 object = endpoint.create(payload.dict())
 return object.id

@update.register
def _(payload: InterfacePayload, id: int, **kwargs: Any) -> bool:
 return _update_object(payload, id, endpoint=api.dcim.interfaces)

Figure 26: Single dispatch Netbox create

Figure 27: Single dispatch Netbox create register

Figure 28: Netbox service create object

Figure 29: Single dispatch Netbox update

Services

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

22

The ID is used to fetch the object from the NetBox API, update the object with the dictionary created from the

supplied payload, and send the update to NetBox.

5.2.4 Get

The NetBox service also defines other helpers, for example, to get an single object, or a list of objects, of a

specific type from NetBox.

Both types of helpers accept keyword arguments that can be used to specify the object(s) that are wanted. For

example get_inteface(id=3) will fetch the single interface object with ID equal to 3 from NetBox. And

get_interfaces(speed=1000000) will get a list of all interface objects from NetBox that have a speed of

1Gbit/s.

5.2.5 Delete

Another set of helpers is defined to delete objects from NetBox. For example, to delete an Interface object from

NetBox, see below:

The keyword arguments allow for different ways of selecting the object to be deleted, as long as the supplied

arguments result in a single object.

def get_interfaces(**kwargs) -> List:
 return api.dcim.interfaces.filter(**kwargs)

def get_interface(**kwargs):
 return api.dcim.interfaces.get(**kwargs)

def delete_interface(**kwargs) -> None:
 delete_from_netbox(api.dcim.interfaces, **kwargs)

def delete_from_netbox(endpoint, **kwargs) -> None:
 object = endpoint.get(**kwargs):
 object.delete()

Figure 30: Netbox service update object

Figure 31: Netbox service get object(s)

Figure 32: Netbox service delete

Figure 33: Netbox service delete object

def _update_object(payload: NetboxPayload, id: int, endpoint: Endpoint) -> bool:
 object = endpoint.get(id)
 object.update(payload.dict())
 return object.save()

Services

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

23

5.2.6 Product Block to NetBox Object Mapping

The modelling used in the orchestrator does not necessarily have to match the modelling in your OSS or BSS

exactly. In many cases, different names are used, or a one-to-many or many-to-one relation needs to be created.

To facilitate future transition to a different external system, any needed mappings, or translations between the

models, are isolated as much as possible in the workflow step(s) that deal with those external systems.

The diagram below shows the product blocks and relations as used in a core link between two nodes, and how

they map to the objects as administered in NetBox. The product blocks are shown in orange and the NetBox

objects in green.

Figure 34: Node and core link type mapping

Services

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

24

Finally, the next diagram below shows the mapping and relation between product blocks and NetBox objects for

a L2VPN on customer ports between two nodes.

Figure 35: Node, port and L2VPN type mapping

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

25

Glossary

API Application Programming Interface

ASGI Asynchronous Server Gateway Interface

BCP Best Common Practice

BSS Business Support System

gNMI gRPC Network Management Interface

gRPC generic Remote Procedure Call

GUI Graphical User Interface

IMS Inventory Management System

IPAM IP Address Management

L2VPN Layer 2 Virtual Private Network

L3VPN Layer 3 Virtual Private Network

NETCONF NETwork CONFiguration protocal

NREN National Research and Education Network

OSS Operation Support System

REST REpresentational state transfer

SAP Service Access Point

SNMP Simple Network Management Protocol

WFO WorkFlow Orchestrator

Milestone M7.4
Example Workflow Orchestrator with IMS and IPAM Integration
Document ID: GN5-1-23-8a1761

26

References

[GN5-1_M7.3] Common NREN Network Service Product Models https://resources.geant.org/wp-

content/uploads/2023/06/M7.3_Common-NREN-Network-Service-Product-

Models.pdf

[WFO] https://workfloworchestrator.org/orchestrator-core/

[NetBox] A tool for data centre infrastructure and IP address management

https://netbox.dev

[SQAlchemy] The Python SQL Toolkit and Object Relational Mapper https://www.sqlalchemy.org

[Uvicorn] ASGI server https://www.uvicorn.org

[Pydantic] Pydantic is a data validation library for Python https://pydantic.dev/

[Pynetbox] Pynetbox Python API https://github.com/netbox-community/pynetbox

https://resources.geant.org/wp-content/uploads/2023/06/M7.3_Common-NREN-Network-Service-Product-Models.pdf
https://resources.geant.org/wp-content/uploads/2023/06/M7.3_Common-NREN-Network-Service-Product-Models.pdf
https://resources.geant.org/wp-content/uploads/2023/06/M7.3_Common-NREN-Network-Service-Product-Models.pdf
https://workfloworchestrator.org/orchestrator-core/
https://netbox.dev/
https://www.sqlalchemy.org/
https://www.uvicorn.org/
https://pydantic.dev/
https://github.com/netbox-community/pynetbox

