
 

08-09-2022 

White Paper: 
Timestamping and Clock Synchronisation 
in P4-Programmable Platforms 

 

Grant Agreement No.: 856726 

Work Package WP6 

Task Item: Task 1 

Document Type: White Paper 

Dissemination Level: PU (Public) 

Lead Partner: GARR 

Document ID: GN4-3-22-49EC10 

Authors: Tomáš Martínek (CESNET), Mauro Campanella (GARR), Federico Pederzolli (FBK), Joseph Hill 

(UvA), Marinos Dimolianis (NTUA), Damian Parniewicz (PSNC) 

© GÉANT Association on behalf of the GN4-3 project. 

The research leading to these results has received funding from the European Union’s Horizon 2020 research and 

innovation programme under Grant Agreement No. 856726 (GN4-3). 

Abstract 

This white paper investigates the capabilities of current P4-programmable platforms in terms of timestamps and clock 

synchronisation, and evaluates their readiness for emerging In-band Network Telemetry (INT) monitoring applications. It 

provides a summary of INT, introduces the concepts of time synchronisation, and presents a review of current P4 

platforms’ capabilities, including the practical implications for INT. 

 



 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

ii 

Table of Contents 

Executive Summary 1 

1 Introduction 2 

2 In-Band Network Telemetry 3 

3 Clock Synchronisation 5 

3.1 Single Clock Behaviour 5 

3.1.1 Drift 5 

3.1.2 Jitter 8 

3.1.3 Adjustment 8 

3.2 Getting Precise Time and Its Distribution 9 

3.2.1 Time Source from Satellites 9 

3.2.2 Protocols to Distribute Time 10 

3.2.3 The Choice between GPS, NTP and PTP 16 

4 Practical Considerations 18 

4.1 Timestamp Formats, Ranges, and their Meanings 18 

4.2 Where in the P4 Architecture/Model the Timestamps Are 

Captured/Inserted 20 

4.3 Where in the INT Platform the Timestamps Are Actually Captured and 

Inserted 21 

4.4 The Source of the Timestamps 21 

4.5 How the Time Source Is Synchronised 22 

5 Conclusions 23 

Appendix A P4-Programmable Platforms and Support for Timestamping/Clock 

Synchronisation 24 

A.1 Software-Based platforms 25 

A.1.1 BMv2 25 

A.1.2 T4P4S 28 

A.1.3 p4c-dpdk 29 

A.1.4 p4c-ebpf 29 

A.1.5 p4c-xdp 30 

A.1.6 p4c-ubpf 31 

A.2 P4-Programmable SmartNICs 32 

A.2.1 FPGA-Based 32 

A.2.2 NPU-Based 34 



Contents 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

iii 

A.3 P4-Programmable Switches 34 

A.3.1 Intel/Barefoot Tofino-Based Switches 34 

A.3.2 Others 36 

References  37 

Glossary  41 

 

Table of Figures   

Figure 3.1: Time storage and maintenance using a simple counter (top); block diagram 

of the circuit and the waveform showing the relationship between clock signal and 

value of the counter (bottom) 6 

Figure 3.2: The difference between precise and real oscillators 7 

Figure 3.3: Advanced circuit for storing and maintaining local time 7 

Figure 3.4: Clock jitter – comparison of the ideal and real clock signals 8 

Figure 3.5: Local time update – step vs. gradual change of local time value 9 

Figure 3.6: Clock synchronisation using Network Time Protocol (NTP) 11 

Figure 3.7: Clock synchronisation using Precise Time Protocol [NTPF] 13 

Figure 3.8: Clock synchronisation using switches in End-to-End Transparent Clock mode 

[Mitchell_2019] 14 

Figure 3.9: Clock synchronisation using switches in Peer-to-Peer Transparent Clock 

mode [Mitchell_2019] 15 

Figure A.1: v1model architecture 25 

Figure A.2: PSA architecture 25 

Figure A.3: Hardware architecture 26 

Figure A.4: BMv2 software architecture 27 

Figure A.5: T4P4S software architecture 28 

Figure A.6: eBPF software architecture 29 

Figure A.7: eBPF model architecture 30 

Figure A.8: XDP software architecture 30 

Figure A.9: XDP model architecture 31 

Figure A.10: uBPF model architecture 32 

Figure A.11: SimpleSumeSwitch architecture 33 

Figure A.12: Tofino native architecture 35 

Figure A.13: Spectrum 2 architecture [Mellanox] 36 

 



Contents 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

iv 

Table of Tables  

Table 2.1: Functions of INT-enabled network nodes 3 

Table 4.1: Examples of platforms and their timestamps 19 

 

 



 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

1 

Executive Summary 

Ongoing tests within the GN4-3 project by Work Package 6 Network Technologies and Services 

Development, Task 1 Network Technology Evolution, about using In-band Network Telemetry (INT) 

have highlighted the usefulness and relevance of precise time synchronisation of clocks in network 

nodes. Such synchronisation simplifies the evaluation and comparison of the time of events in 

different nodes, their absolute order in time, and the computation of metrics that rely on accurate 

time differences, such as one-way packet delay between nodes in the networks. Furthermore, the 

current INT capabilities permit tagging each packet with a timestamp, even in high-capacity links (100 

Gbps), suggesting that time between participating nodes should be synchronised with high precision, 

in the order of microseconds or nanoseconds. The accuracy required will depend on the specific use 

case. 

This white paper first provides a summary of INT, introduces the basic concepts and components of 

time synchronisation, and then presents its use in the case of INT, including a review of current 

capabilities in hardware elements. Hardware support is required to reach sub-millisecond accuracy. 

Setting time on networked devices is typically done with Network Time Protocol (NTP), which, if 

configured well, may be accurate down to the millisecond level. For higher accuracy, the Precision 

Time Protocol (PTP) has been defined as a standard tool to distribute time information from high-

precision sources and to be used where higher precision synchronisation is required. However, PTP 

requires specific hardware support, and is not (yet) widely deployed. 

The review also highlights the complexity generated by the lack of specification in the INT standard 

for time representation in INT headers, with a combination of time-of-day and fast counter. Hardware 

platforms should also signal when their counter wraps and provide the functionality of 

synchronisation using PTP. 

The effort is supported by the GN4-3 project in Work Package 6, Task 1. 

 

 



 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

2 

1 Introduction 

With the transition to high-speed fibre-optic communication, the development of ubiquitous high-

speed networks, and the migration of applications to the cloud, the demands on network 

infrastructure have increased. The emphasis is now often on gaining the lowest possible 

communication latency. To meet these requirements, it is necessary to have not only a robust and 

distributed infrastructure but also effective tools for managing and monitoring it. 

A promising technology for gathering detailed, real-time information from network and traffic is In-

band Network Telemetry (INT), which can report the characteristics of switches and individual packets 

and flows traversing them. The effectiveness of this technology relies on individual monitoring probes 

distributed along with the network infrastructure that runs inside selected switching elements. In 

contrast to other technologies, INT is designed to run directly at the data-plane level and does not 

burden the switching process itself. At the same time, INT tries to offer the user as much flexibility as 

possible, being able to monitor selected flows or their specific parameters. 

Such flexibility of detailed and selective monitoring per specific use case is enabled with the use of P4-

programmable network software or – preferably – hardware solutions. To provide adequate 

performance in one-way delay and delay variation (jitter) measurements, it is also required that all 

measurement nodes are synchronised using a standard definition of the time [Time_Def_Stds], such 

as GPS [GPS] or Coordinated Universal Time [UTC], as accurately as possible. 

The aim of this paper is to investigate the capabilities of current P4 platforms in terms of timestamps 

and clock synchronisation, and to evaluate their readiness for emerging INT monitoring applications. 

In their review, the authors have included not only hardware switch platforms but also platforms 

based on smart network interface cards (SmartNICs) or platforms operating at different software 

levels. They also focused on the key features in which these platforms differ and their impact on 

practical applications. 

Section 2 provides a short summary of In-band Network Telemetry, and Section 3 gives an introduction 

to time synchronisation concepts. Section 4 considers the practical implications of time 

synchronisation for INT. Section 5 provides a summary and conclusions. Appendix A provides a 

summary of the technical features of platforms for INT and time synchronisation. 

The effort is supported by the GN4-3 project in Work Package 6 Network Technologies and Services 

Development, Task 1 Network Technology Evolution. 

 



 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

3 

2 In-Band Network Telemetry 

In-band Network Telemetry (INT) is a promising technology for network traffic monitoring exploiting 

the paradigm of data plane programming (DPP). It exploits the benefits of being able to program 

hardware devices through the P4 language [P4_Language] to extract the local computed information 

from the device and record it directly inside the packets of interest as they traverse the network. 

INT is complementary to streaming telemetry, with which network devices such as routers, switches 

and firewalls push data, usually averaged, related to the network’s health. INT monitoring can focus 

in real time on a single flow or event according to the associated P4 code. 

Each INT-enabled network node can fulfil one of three distinct functions on the path of the packets or 

flow being monitored: 

Function Description 

Source The initial measurement node. Inserts an additional header in selected (possibly all) packets, 
containing the information that will be forwarded by subsequent INT-enabled nodes (e.g., 
timestamp of packet arrival/departure, occupancy of local queues, etc.). 

Transit Any INT-capable intermediate node traversed by a packet carrying an INT header. May add a 
new header, or extend a header inserted into the packet by the source node by adding the 
local values of requested information. 

Sink The last node along the monitored path. Removes the INT headers inserted by the source 
node and by any transit nodes, adds its local information, and forwards that data to a 
collector, where the information is stored for further analysis. 

Table 2.1: Functions of INT-enabled network nodes 

A more detailed overview of INT is available in the WP6 T1 white paper In-band Network Telemetry 

Tests in NREN Networks [WP_INT_Tests]. 

Timestamps can be used to measure, for example, one-way delay and IP packet delay variation (IPDV) 

[RFC_3393], both for the end-to-end path and for any span between INT nodes. Queue occupancy 

information allows the user to further identify the likely location and causes of any delay experienced. 

Based on this information, network engineers or administrators may implement corrective measures, 

e.g. the quality-of-service (QoS) performance might be tuned at congested points in the network in 

order to prioritise time-sensitive flows. The impact of such measures can then be assessed in detail 

and in real time. 



In-Band Network Telemetry 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

4 

The INT specification v1.0 [INT_SPEC1.0] and subsequent versions [INT_SPEC2.0], [INT_SPEC2.1] 

suggest that the Ingress timestamps should be recorded as soon as possible after the packet enters 

an INT-enabled network element (in fact, in the reference implementation, it should be recorded as 

metadata before even starting to parse the headers), and similarly the Egress timestamp ought to be 

recorded as late as feasible to accurately record the full time the packet spends in the device. 

Hardware support is needed to add timestamps with sub-millisecond precision, especially at current 

line rates of multiple tens or hundreds of Gigabits per second (tens of thousands or millions of packets 

per second). 

However, to measure precisely delay (time spent in the network by a packet to reach its destination) 

and jitter/IPDV (variation in delay of uni-directional, consecutive packets between nodes in a network), 

it is essential that individual nodes insert accurate timestamps into transiting packets and that such 

timestamps are synchronised with the global time. 

 

 



 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

5 

3 Clock Synchronisation 

Synchronising clocks on networked devices implies a set of procedures which ensure that multiple, 

often geographically distributed clocks – each providing a local clock signal for a network node – share 

a consistent view of the time. The original source of time, an atomic clock, for example, is usually 

capable of an accuracy of picoseconds (10-12 of a second). 

Clock synchronisation is anything but trivial: individual nodes must maintain and update their internal 

(local) time using a hardware timer controlled by oscillators (clock crystals). These clock crystals are 

not very accurate, causing the local clock to gradually drift from the global time (local clock drift). The 

frequency of these oscillators is also dependent on local environmental changes such as temperature, 

vibration, etc., causing local clock jitter. 

The measuring nodes have to deal with all these issues, request precise time information (from a 

trusted node), and adjust their local time repeatedly during normal operation, ideally at least multiple 

times per minute (and proportionally to their clock drift and desired accuracy). A more detailed 

description of these problems, including the solutions used, is given in the following subsections. 

3.1 Single Clock Behaviour 

Behaviour of a single clock is determined by the clock drift (time shift) from the nominal clock, clock 

jitter and its adjustments in time, as described in this subsection. 

3.1.1 Drift 

An INT measuring node (source, transit, or sink) needs to implement a mechanism for storing and 

maintaining precise time information to insert timestamps into packets. One of the simplest ways to 

implement such a mechanism is to connect the source of the clock signal, the so-called oscillator, to a 

counter, which increments its value in each clock cycle. The block diagram of such a circuit and the 

waveform showing the relationship between the clock signal and the value of the counter is presented 

in Figure 3.1. 



Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

6 

 

Figure 3.1: Time storage and maintenance using a simple counter (top); block diagram of the circuit and the 

waveform showing the relationship between clock signal and value of the counter (bottom) 

The value of the counter can then, for example, represent the number of ticks since the boot time of 

the node (connection of the supply voltage, system boot, etc.). To relate this number of ticks to an 

actual amount of time – for example, the number of seconds since the system was started – it is 

necessary to multiply the value of the counter by the length of the clock signal period of the oscillator 

used. Note that the length of the clock signal period can be calculated as T = 1 / f. If the frequency of 

the oscillator is 100 MHz and 5 ticks have elapsed since the start of the node, then the corresponding 

time interval equals 10 ns * 5 = 50 ns. 

Storing and maintaining information about the current actual, global time can then be realised within 

this simple hardware circuit by adjusting the initial value of the counter. For example, the amount of 

time elapsed since the start of the Unix epoch (midnight on 1/1/1970) could be obtained. 

However, this simple implementation suffers from several problems. The first is the fact that 

commonly available clock sources (oscillators) have limited accuracy. In other words, it is not currently 

possible to mass-produce crystals that generate, for example, a signal with a frequency of exactly 

100 MHz. Real clock crystals oscillate at a frequency that is always a little more or less than the nominal 

one, primarily because of imperfections in the production process. Thus, each crystal has a certain 

accuracy, and this is defined in PPM (Parts Per Million) units, i.e., by how many parts per million (e.g., 

microseconds every second) the clock may differ from the correct and expected amount of progress. 

The accuracy of commonly available and used oscillators in electronics ranges from 20 to 100 PPM. It 

is also possible to obtain crystals with higher accuracy of around 1 PPM, but at a significantly higher 

price. 



Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

7 

If an oscillator with an accuracy of 100 PPM is used in the circuit to store and maintain the current 

time information mentioned above, it would mean that every second, the value of the current time 

(stored on a given measuring node) can differ by up to 100 microseconds compared with the exact 

global time (see Figure 3.2). This regular time shift is also referred to as clock drift. 

 

Figure 3.2: The difference between precise and real oscillators 

A second limitation of said hardware circuit is the need to convert the value of the counter to time, 

which requires an additional multiplication operation for every reading. Both of these limitations can 

be removed by modifying the circuit, as shown in Figure 3.3. The main change is in the generalisation 

of the counter increment mechanism: instead of adding 1 for each clock cycle, a pre-set or 

configurable value representing the amount of elapsed time is added to the increment register. 

 

Figure 3.3: Advanced circuit for storing and maintaining local time – clock drift and counter conversion to time 

solved using configurable increment register 

If this value is chosen (or dynamically adjusted) appropriately, it can eliminate both clock drift and the 

need to convert the value of the counter to time. Consider, for example, an oscillator with a frequency 

of 100 MHz (T = 10 ns). If the value 10 is stored in the increment register, then the value of the counter 



Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

8 

will directly represent the time in ns. In addition, consider the inaccuracy of an oscillator of 100 PPM, 

when the actual time of the clock signal period will be T * 10-4 ns shorter (frequency is higher). Then 

to compensate for clock drift, the value of the increment register must be set to T * (1 - 10-4). 

3.1.2 Jitter 

The stable deviation of the clock signal period (defined through PPM) is not the only problem of real 

oscillators. In fact, the period of the clock signal may change dynamically for a particular oscillator (as 

shown in Figure 3.4). These dynamic changes are usually due to changes in the oscillator’s 

environment, most often temperature. The resulting deviation over time in the length of the clock 

period is called clock jitter. 

 

Figure 3.4: Clock jitter – comparison of the ideal and real clock signals 

The adverse effects of clock jitter can be partially reduced through a stable oscillator environment, 

such as an air-conditioned room or box where the measuring node is located. Unfortunately, it cannot 

be completely eliminated. In practice, this means that the local time of a given measuring node must 

be periodically compared with the exact time source and synchronised with it. 

3.1.3 Adjustment 

From the point of view of the measuring node, the update of the local time should be continuous, 

without sudden jumps to the future or the past. This means that for every two timestamps assigned 

to successive packets p1 and p2, then it must hold that timestamp (p1) < timestamp (p2), even if a 

local clock update took place in between these two measurements. Using a simple approach, in which 

the local time is always overwritten by the precise global time at each time synchronisation, does not 

guarantee this property, which leads to non-negligible issues for detailed telemetry, such as in-order 

packets appearing to cross a switch out-of-order, or large (and entirely artificial) jumps appearing in 

jitter measurements (see Figure 3.5). 



Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

9 

 

Figure 3.5: Local time update – step vs. gradual change of local time value 

In practice, a gradual change of the local time is ensured, for example, by a suitable update of the 

value of the increment register. Changing this value allows the gradual slowing (or, conversely, 

acceleration) of a local clock to bring it into and keep it in alignment with the precise global time. 

3.2 Getting Precise Time and Its Distribution 

There are various sources of precise time. They are usually represented as a hierarchical model 

consisting of a semi-layered system of time sources. Each level of this hierarchy is termed a stratum, 

with higher levels within the hierarchy representing higher accuracy of the corresponding time sources: 

the highest layer, stratum 0, represents atomic clocks [ACW], then stratum 1 corresponds to nodes 

connected to stratum 0, and so forth. The signal may be received by satellites or radio and, more 

recently, can be received using an optical fibre. 

3.2.1 Time Source from Satellites 

One of the easiest ways to get accurate time information for a measurement node is to use an antenna 

to collect information sent by satellite. The signal provides time and position information used to 

compute the receiver’s position and absolute time at high precision. Known services are Global 

Positioning System (GPS) and Global Navigation Satellite System (GNSS) [GPS]. This receiver usually 

collects the information sent by more than one satellite, each containing a stratum 0 time source 

(atomic clock). The receiver also generates a Pulse per Second (PPS) signal, which represents a short 

pulse (signal goes high for a short period of time) generated once per second. The accuracy of this 

signal generation is in the order of tens of nanoseconds [PPS] depending on receiver quality and also 

on connection with the external antenna. 



Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

10 

The high accuracy of the PPS signal can then be used by the measuring node to synchronise its local 

clock. Through the accurate PPS signal, the deviation of the local time from the exact time can be 

measured periodically (e.g., every second) and the increment register value can be adjusted 

appropriately. This is referred to as the clock servo algorithm. 

3.2.2 Protocols to Distribute Time 

Despite its simplicity, the use of GPS has several drawbacks, including: 

• The GPS receiver must be connected to an outdoor antenna that has a direct line of sight to 

various satellites. This can pose challenges, especially when measurement nodes are located 

in server rooms and basements of buildings. 

• Limited scalability – if there are multiple measurement nodes within a local network requiring 

clock synchronisation, then connecting each of them individually to GPS receivers is complex 

and expensive. 

To overcome the scalability problem in particular, specialised network protocols have been designed 

and implemented in the past to distribute precise time information over LAN/MAN networks. The 

basic idea of these protocols is to minimise the number of nodes connected and synchronised through 

GPS and to distribute the precise time information from these (master) nodes to the remaining (slave) 

nodes through the available computer network. Examples of these protocols that have also become a 

standard are Network Time Protocol (NTP) [RFC_1059] and Precision Time Protocol (PTP) [IEEE_1588-

2008]. Each of these is described below. 

 Network Time Protocol (NTP) 

NTP was one of the first protocols to be defined for synchronising nodes in a computer network. The 

first specification was released in 1988 (RFC 1059) and the fourth version, NTPv4 (RFC 5905) 

[RFC_5905], is currently in widespread use. 

Clock synchronisation is realised through the NTP protocol, which is based on the client-server model, 

where clients (nodes requiring clock synchronisation) poll one or more NTP servers (precise time 

sources). Based on the information obtained from the server(s), the clients calculate their own time 

offset against the precise time source and adjust their local clocks. 

Communication between the client and the server takes place as follows (see Figure 3.6): 

1. The client sends a packet with a request to the server and records the timestamp at the 

moment of packet transmission, T1 (client time domain). 

2. The server receives the packet and records the timestamp of the moment of its arrival, T2 

(server time domain). 

3. The server then sends a response to the client that includes both T1 and the timestamp of the 

moment the outgoing packet leaves the server, T3 (server time domain). 

4. The client receives the response and records the timestamp of its arrival, T4 (client time 

domain). 



Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

11 

 

Figure 3.6: Clock synchronisation using Network Time Protocol (NTP) 

Based on the obtained timestamps T1, T2, T3 and T4, the client calculates the mean path delay 

between client and server as: 

MeanPathDelay = [(T2-T1) + (T4-T3)] / 2 

Based on the mean path delay, the client can calculate the offset of its local (inaccurate) time 

according to the server’s (precise) time and then adjust its local clock accordingly. 

TimeOffset = Server Time - Client Time - MeanPathDelay 

TimeOffset = T2 - T1 - [(T2-T1) + (T4-T3)] / 2 

TimeOffset = [(T2-T1) - (T4-T3)] / 2 

The accuracy of local clock synchronisation via NTP depends on the network environment in which it 

is deployed, and several factors affect that accuracy. The MeanPathDelay calculation assumes equal 

delay in both directions of communication; the delay between client and server can vary, depending 

on the load on the network elements along the path; finally, timestamps are assigned at the software 

level on the client and server side, which may add non-negligible and non-constant delays. Thus, the 

variable delay between the arrival of a packet at the physical server/client interface and the 

assignment of a timestamp after its reception in software is also reflected in the MeanPathDelay and 

TimeOffset calculations. 

That said, in typical R&E networks, where there are well-provisioned backbones and network 

equipment and campus/site networks with gigabit or better networking to server systems, it is not 

unusual to see synchronisation within or below a millisecond or two. Data observed from perfSONAR 

deployments support this observation. However, if the network environment is not so good, perhaps 

with congestion, high jitter, asymmetric paths, poorly specified network hardware, or even poorly 

chosen NTP servers, the synchronisation accuracy might rise to in the order of a few milliseconds 

[Wang_2008]. 

 Precision Time Protocol (PTP) 

The PTP protocol (IEEE 1588 standard, latest version 2019 [IEEE_1588-2019]) is a more recent 

alternative to NTP that attempts to remove its disadvantages and improve clock synchronisation 



Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

12 

accuracy. The basic idea based on measuring the mean path delay and calculating the time offset 

between client and server is retained. One of the main changes, however, concerns the way the T1 to 

T4 timestamps are captured. Whereas in NTP they were sampled at the software level, in PTP they are 

assumed to be measured at the hardware level, as close as possible to the physical network interface. 

This step eliminates the variable packet transmission delay between the physical network interface 

and the software. 

Measuring timestamps on incoming packets is relatively easy to implement at the hardware level. The 

timestamp is taken at the time the packet transitions between the PHY and MAC layers and is attached 

to the packet. For outgoing packets, the situation is much more challenging, as it is not easy to 

simultaneously add a timestamp to the packet just sent and recalculate checksums at different 

protocol layers. PTP solves this situation by sending the timestamp through the Follow_Up 

downstream packet. 

The overall communication protocol diagram is shown in Figure 3.7. There are also several other 

changes from the NTP protocol: 

• The server and client nodes have been renamed to Master (or also Grand-Master) and Slave 

(or also Ordinary Clock). 

• Communication is not initiated by the Ordinary Clock node but by the Grand-Master, which 

sends (via multicast or unicast) a Sync message at regular intervals to measure the path delay 

in the direction from the Grand-Master to the Ordinary Clock. 

• In case the Ordinary Clock wants to adjust its local clock relative to the Grand-Master, it 

responds by sending a DelayRequest message, which in turn is used to measure the path delay 

in the direction from the Ordinary Clock to the Grand-Master. 

• The last T4 timestamp obtained on the Grand-Master side is then sent towards the Ordinary 

Clock in a separate DelayResponse message. 

Based on the knowledge of timestamps T1 to T4, the Ordinary Clock then calculates MeanPathDelay 

and TimeOffset according to the same equations as for NTP. 



Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

13 

 

Figure 3.7: Clock synchronisation using Precise Time Protocol [NTPF] 

Sensing timestamps at the hardware level is not the only benefit of PTP. As mentioned above, the 

accuracy of the MeanPathDelay measurement and TimeOffset calculation between an Ordinary Clock 

and Grand-Master is also negatively affected by the variable delay of switches that are placed along 

this path. This delay usually varies depending on the load on the switches and may be different for 

each direction of communication. One way to address this problem (defined by the standard IEEE 1588) 

is to set the switches to End-to-End Transparent Clock (TC-E2E) mode. In this mode, the switches 

detect Sync and DelayRequest messages on their ports, measure the time these messages take to pass 

through the switch (called residence time) and increment the correctionField entry inside these 

packets by the residence time value (see Figure 3.8). Ordinary Clock nodes can then easily calculate 

how much of the measured path delay is the variable part (spent inside switches) and refine the 

calculation for TimeOffset. 



Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

14 

 

Figure 3.8: Clock synchronisation using switches in End-to-End Transparent Clock mode [Mitchell_2019] 

Variable switch delays are not the only problem. If the local network has a large number of Ordinary 

Clock nodes, then the Grand-Master node may be overloaded and must respond to incoming 

DelayRequest messages from all these Ordinary Clocks. One solution (defined by the IEEE 1588 

standard) is to set selected switches on the path to the Grand-Master node to Boundary Clock (BC) 

mode. In this mode, the switch very precisely synchronises its internal clock with the Grand-Master 

node, creating an alternative source of accurate time within the LAN. It starts generating Sync 

messages on its (Slave) ports towards the Ordinary Clocks by itself. At the same time, it responds to 

DelayRequest messages itself and no longer sends them towards the Grand-Master. 

Implementing the Boundary Clock mode inside switches is not easy. The switch must be equipped with 

a temperature-stabilised oscillator, ensure clock drift elimination, and also implement the PTP Best 

Master Clock (BMC) algorithm to select the best time source to synchronise against. Therefore, as an 

alternative to the Boundary Clock mode, the IEEE 1588 standard also defines the so-called Peer-to-

Peer Transparent Clock (TC-P2P) mode. Similar to TC-E2E mode, under TC-P2P, Sync messages are sent 

from the Grand-Master node towards all Ordinary Clocks. For these Sync messages, the switches 

calculate the residence time and update the correctionField entry. The main difference lies in the 

handling of DelayRequest messages from the Ordinary Clock side. These messages are not sent 

towards the Grand-Master, but the switch in TC-P2P mode responds to them itself. To be able to 

respond correctly, it must maintain information about the current path delay between itself and the 

Grand-Master. It obtains this information through its own sequence of pDelayRequest and 

pDelayResponse messages with the Grand-Master node (see Figure 3.9). Note that when computing 

the path delay, it is not necessary for a switch in TC-P2P mode to have its local clock fully synchronised 

with the Grand-Master node and only the so-called syntonisation is sufficient. 



Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

15 

 

Figure 3.9: Clock synchronisation using switches in Peer-to-Peer Transparent Clock mode [Mitchell_2019] 

Switches in TC-P2P mode can also be cascaded to further eliminate communication with the Grand-

Master node. In addition, Boundary Clock, TC-E2E and TC-P2P switches can be combined in various 

ways within the LAN/MAN architecture, depending on the specific requirements of the operator. A 

complete description of these modes and their features, advantages and disadvantages is beyond the 

scope of this document and can be found, for example, in [Mitchell_2019]. 

By applying the above techniques, it is possible to achieve clock synchronisation accuracy in the order 

of a few microseconds or even sub-microsecond. However, hardware-level support is required not 

only on the Grand-Master and Ordinary Clock side but also in the switches that are along the path. 

This is discussed below. 

Hardware Support for PTP Synchronisation 

While PTP offers improved clock synchronisation and accuracy compared to NTP, it comes at the cost 

of requiring specific support in network device hardware. 

At the end-node level (Ordinary Clocks), IEEE 1588 support requires network interface cards (NICs) to 

be able to: 

1. Assign a timestamp to the selected outbound and inbound packets (Sync and DelayRequest) 

as close to the physical network interface (preferably between the MAC and PHY layers) as 

possible. 

2. Maintain the local time that is further used as a source of timestamps, using, for example, the 

implementation based on a circuit with increment register and its setting option (as described 

in Section 3.1.1 Drift and Figure 3.3). 

Full IEEE 1588 support can be efficiently implemented in conjunction with software. While the 

hardware identifies PTP packets and assigns timestamps to them, the software performs detailed 

processing, maintains a history of measured time offsets, and implements complex algorithms for 

increment register control and adjustment (clock servo algorithm). 



Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

16 

In addition, by defining a generic interface at the operating system and network card driver level, it is 

possible to decouple the specific hardware implementation and create universal software to process 

the PTP protocol over any network card supporting this interface. Within the Linux operating system, 

these are specifically the ptp4l and phc2sys software tools [Ténart_2020]. 

PTP support at the switch hardware level is a bit more comprehensive compared to Ordinary Clocks. 

The standard defines several modes of switch operation (TC-E2E, TC-P2P, and Boundary Clock). The 

TC-E2E mode is the simplest in terms of implementation and does not place such high demands on 

the accuracy of the local clock. It is sufficient if the switch is able to identify PTP packets, calculate the 

residence time and edit the correctionField entry, including updating checksums. Similarly, TC-P2P 

mode support requires the switch to additionally periodically generate and process pDelayRequest 

and pDelayResponse messages and maintain the current delay value on the path to the Grand-Master 

node. The most challenging is Boundary Clock (BC) mode, which requires the switch to synchronise 

the local clock autonomously, process messages from Ordinary Clocks, and implement the Best Master 

Clock (BMC) algorithm. 

While PTP support at the NIC level has become common and readily available, the situation is worse 

for switches. Switches with PTP support are rarely found on the market and are more expensive. 

Further, to achieve the highest synchronisation accuracy, PTP needs to be supported on as many 

switches as possible along the path between the Grand-Master and Ordinary Clocks nodes. It is not 

mandatory for all switches along the way to support PTP. However, each non-PTP switch reduces 

synchronisation accuracy because it is unable to calculate the residence time and update the 

correctionField in PTP messages. For the end node (Ordinary Clock), this complicates the TimeOffset 

calculation compared with the exact source.Therefore, PTP support is rarely encountered in current 

computer networks. 

This situation could significantly improve in the future with the proliferation of P4-programmable 

switches, where the basic TC-E2E mode can be implemented quite easily by simply changing the P4 

program. 

3.2.3 The Choice between GPS, NTP and PTP 

The choice of a particular technology for obtaining accurate time information depends on various 

factors. However, the most important one is the specific use case and its synchronisation accuracy 

requirements. This paper focuses on In-band Network Telemetry (INT) technology and its application 

for the purpose of measuring the quality of traffic flows. INT technology itself can be applied to 

different use cases and for some of them it requires the synchronisation of INT nodes (source, transit 

and sink). 

As an example, for one-way delay (OWD) measurement, consecutive packets must have different 

timestamps on the source and destination nodes. 

SrcTstamp(pn) < SrcTstamp(pn+1) 

DstTstamp(pn) < DstTstamp(pn+1) 

This requirement can be satisfied by a suitable implementation for local clock adjustment (see Section 

3.1.3). 



Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

17 

It is also mandatory that the time of delivery of a packet to the destination node is always higher than 

the time of emission from the source node. 

SrcTstamp(pn) < DstTstamp(pn) 

The actual communication delay between the source node and the destination node is expressed as: 

Delay(pn) = DstTstamp(pn) - SrcTstamp(pn) 

Both the source and destination nodes are subject to clock synchronisation error: 

SrcTstamp(pn) + SrcError < DstTstamp(pn) + DstError 

In the worst case, the maximum source and destination node error may be added and exceed the 

“real” delay: 

2 x MaxError > Delay(pn) 

With regard to the NTP protocol, as stated in Section 3.2.2.1, the accuracy of synchronisation is 

dependent on the network environment – the network properties and configuration – in which the 

protocol is used. In R&E networks, which are usually well-provisioned, high speed, well-configured and 

well-specified, the accuracy achieved can be within or below a millisecond or so.1 In poor network 

environments, e.g. with congestion, high jitter, asymmetric routing and poor NTP installation, it may 

rise to the order of a few milliseconds. 

To measure communication delay using INT within a LAN or MAN, INT with precision lower than a few 

milliseconds, nodes synchronised via PTP or GPS should be used. 

Accuracy requirements can be further tightened based on the requirements of the application being 

monitored. For example, when monitoring remote videoconference calls, the end-to-end latency 

requirement is below 100 ms, including possible video compression and decompression at the end 

nodes. This typically leaves tens of ms for the network transmission itself [Baldi_2000]. In the Low 

Latency (LoLa) application [LoLa], interactivity is preserved only when delay is below 30 ms. Similarly, 

the accuracy requirements for applications from the 5G area (self-driving cars, augmented reality, 

smart city cameras, IoT sensors) and from the edge/cloud computing area (gaming, AR/VR experience, 

media/CDN) often mandate a maximum communication latency below 10 milliseconds [IEEES]. 

The above suggests that some use cases would greatly benefit if the measurement nodes were 

synchronised using PTP or local GPS, even if both technologies require hardware support. PTP should 

be preferred due to its very good scalability and the requirement for only one or two stratum zero 

sources. The use of GPS implies positioning an antenna with a clear view of at least 3 to 5 satellites, 

which is not easily achievable in many environments. 

 
1 This level of accuracy is particularly remarkable given that one-way delay in fibre between neighbouring countries within 

Europe is typically in the range of 10–20 ms and between continents is around 100 ms [VER]. 



 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

18 

4 Practical Considerations 

In the work for this paper, the authors have focused on the analysis of available P4 platforms and their 

capabilities in terms of timestamp sensing and clock synchronisation. Not only software platforms 

were tested (e.g., BMv2, T4P4S, p4c-dpdk, p4c-ebpf, p4c-ubpf and p4c-xdp) but also hardware 

platforms based on SmartNIC (e.g., P4 to NetFPGA, Netcope P4 and Netronome) or P4-programmable 

switch architectures (e.g., Intel Tofino). A detailed description of findings is given in Appendix A. This 

section gives a brief overview of them, including practical implications for the development of 

applications such as INT. The parameters considered are: 

• Timestamp formats, ranges, and their meanings. 

• Where in the P4 architecture/model the timestamps are captured/inserted. 

• Where in the INT Platform the timestamps are actually captured and inserted. 

• The source of the timestamps. 

• How the time source is synchronised. 

4.1 Timestamp Formats, Ranges, and their Meanings 

Different platforms use different timestamp formats and ranges. The most commonly used format is 

where the stored value represents the number of time units (microseconds, nanoseconds) or units 

derived from the clock signal source used (e.g., 1/156 MHz = 6.4 ns) that have elapsed since the last 

counter reset. 

The platforms also differ in the number of bits reserved for storing the timestamp (usually 32, 48 or 

64 bits). The number of bits automatically defines the maximum value of time units that can be stored 

and the point at which the timestamp overflows (wraps around) and the count starts again. 

There are also differences in the start of the measured period (epoch). While some platforms have 

this moment adjustable, others define it fixed (e.g., midnight 1/1/1970) or relative to the moment of 

system start or switch start. 

Platform Resolution [bits] Meaning Epoch 

BMv2 48 number of microseconds switch start 

Tofino v1 48 number of nanoseconds adjustable 

Netcope P4 64 number of nanoseconds adjustable 



Practical Considerations 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

19 

Platform Resolution [bits] Meaning Epoch 

NetFPGA 64 number of units derived from the clock 
signal source (8 ns or 6.4 ns) 

since the FPGA boot time 

Table 4.1: Examples of platforms and their timestamps 

When creating a custom application using timestamps, these specific characteristics have to be taken 

into account. When combining timestamps from different platforms, the situation is even more 

complex because some differences in timestamp format may be reconciled at the P4 program level 

(using arithmetic operations) while others can be resolved at a higher level (e.g., a control plane 

application). 

Specifically, INT does not define a specific format for the timestamps. It only defines the size of the 

space to store them. INT specification 1.0 [INT_SPEC1.0] acknowledges the complexity: 

“The exact meaning of the following metadata (e.g., the unit of timestamp values, the 

precise definition of hop latency, queue occupancy or buffer occupancy) can vary from 

one device to another for any number of reasons, including the heterogeneity of device 

architecture, feature sets, resource limits, etc. Thus, defining the exact meaning of each 

metadata is beyond the scope of this document. Instead we assume that the semantics of 

metadata for each device model used in a deployment is communicated with the entities 

interpreting/analysing the reported data in an out-of-band fashion.” 

It seems that it could be beneficial if platforms used the same timestamp format as the standardised 

time synchronisation protocols (NTP or PTP). Unfortunately, even these protocols do not share the 

same or compatible timestamp format with each other.2 

When implementing an INT application, the timestamp format compatibility problem may be 

addressed in several ways: 

1. Base all the INT nodes on the same platform, thus using the same format and timestamp range. 

2. Convert the timestamp to a uniform format already at the level of individual INT nodes. This 

may be feasible, especially for open-source software-based platforms where this change can 

be added. For hardware-based platforms, on the other hand, this approach may be quite 

complex or even impossible. 

3. Use native timestamps within individual INT nodes and perform their conversion to a uniform 

format at the INT collector level. This approach is easy to implement; however, it may place 

an excessive burden on the end node performing the conversion and storing the data. 

 
2 NTP defines the timestamp as 64 bits, where the upper 32 bits represent the number of seconds and the lower 32 bits 
represent the number of fragments within a second. For PTP, 80 bits are used, where the upper 48 bits represent the number 
of seconds and the lower 32 bits represent the number of nanoseconds within a second. 



Practical Considerations 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

20 

4.2 Where in the P4 Architecture/Model the Timestamps 

Are Captured/Inserted 

Different platforms use different P4 architectures/models. The specific model then defines at which 

points in time the timestamp is assigned to the packet. Two approaches are typically encountered: 

1. The timestamp is assigned to the packet when it transits through specific parts of the 

architecture, typically when it enters the ingress and egress pipeline; this applies to v1model, 

Portable Switch Architecture (PSA), or Tofino Native Architecture (TNA). The P4 program, in 

this case, does not affect the timestamp acquisition moment. 

2. The timestamp is obtained based on a call to an external function; applies to 

SimpleSumeSwitch, uBPF model, XDP model. The P4 program directly defines when the 

timestamp should be taken and stored in metadata. 

The specific requirements of the application being developed will suggest which is the most suitable 

model. For example, an INT application requires that packet timestamps be assigned on entry to and 

exit from the switch as close to the physical interface as possible. From this perspective, platforms 

based on v1model, PSA, or TNA are best since a timestamp is assigned to the incoming packet before 

it enters the pipeline (standard metadata for the ingress part). In addition, some hardware platforms 

are able to assign a timestamp to a packet even earlier, i.e., when the packet transits between the 

PHY and the MAC block (e.g., Tofino or Netcope P4). For outgoing packets, the timestamp 

corresponding to the packet entering the egress part of the model is usually used. To increase 

accuracy, this timestamp can be adjusted in the P4 program by the expected time spent in the egress 

pipeline. 3  Although some architectures are able to take a timestamp even when leaving the 

Deparser/MAC block (TNA), it can usually no longer be inserted into the packet currently being sent, 

and therefore it cannot be used for the INT protocol. 

Choosing a model where the timestamp is obtained through a call to an external object 

(SimpleSumeSwitch, uBPF model, or XDP model) may permit a more accurate measurement of the 

moment when the packet leaves the pipeline. On the other hand, the accuracy of measuring the 

packet arrival may be lower, depending on the rules for calling the external block. 

For platforms that use only the ingress pipeline (e.g., NetFPGA, Netcope P4), it is necessary to also use 

the ingress timestamp for outgoing packets, and possibly increase it by the expected time spent in the 

pipeline. The pipeline then ends with a Traffic Manager block, which may add unpredictable delay to 

the packet, reducing the accuracy of the INT measurement. 

Finally, it should be noted that not all platforms actually implement timestamping (e.g. T4P4S, p4c-

dpdk, and p4c-ebpf). Some of the backend compilers do not support it and leave timestamps unset in 

the packet metadata. If it is an open-source project, this functionality can only be added by additional 

in-house coding. 

 
3 The accuracy of the timestamp correction depends on the complexity and variability of the processing in the egress pipeline. 
The resulting accuracy of the timestamp can be affected in the order of units to tens of nanoseconds. 



Practical Considerations 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

21 

4.3 Where in the INT Platform the Timestamps Are 

Actually Captured and Inserted 

For P4-programmable hardware devices, such as SmartNICs and switches (Tofino, NetFPGA, Netcope 

P4, Netronome), the model used usually corresponds to the actual circuit architecture. Timestamps 

are then assigned, for example, between the PHY and the MAC block for incoming packets and when 

entering the egress pipeline for outgoing packets. 

Software-based platforms (BMv2, T4P4S, p4c-xdp, p4c-ebpf, p4c-dpdk, etc.) emulate the P4-pipeline 

function in software, including timestamp scanning for incoming and outgoing packets. The time 

between the arrival of a packet on the physical interface (PHY) and the capturing of the timestamp (in 

the software) is not included in the timestamp. Similarly for outgoing packets. Depending on the 

system architecture and other factors, this delay can vary from microseconds to milliseconds and not 

be stable. Platforms that operate on lower software layers (e.g., XDP and eBPF) or platforms that 

bypass the kernel network stack entirely (e.g., T4P4S, p4c-dpdk, and p4c-ubpf) have the potential to 

achieve better measurement precision. 

Measurement inaccuracies on software-based platforms could be partially avoided by using support 

for hardware timestamps at the NIC level (see Hardware Support for PTP Synchronisation in Section 

3.2.2.2). Many of them can scan timestamps between the PHY and MAC layers for each incoming 

packet. Assigning timestamps to packets sent in hardware is more complicated as the captured 

timestamp must be inserted into the same outgoing packet and the checksums updated (see 

description of the 1-step procedure in Section 3.2.2.2). Unfortunately, none of the current P4-

programmable platforms yet supports the possibility of hardware timestamps at the level of NICs. 

In the case of an INT application, it is necessary to meet high requirements for the accuracy of 

measuring the moments of arrival and departure of the packet to/from the INT node, preferably 

during the transition between the PHY and MAC layers. This can currently only be met by hardware-

based platforms (Tofino, SmartNICs). However, if one of the software-based platforms is used, then 

DPDK-based backends can be recommended, where kernel bypass is used, or XDP, where processing 

is still done at the driver level. 

4.4 The Source of the Timestamps 

When developing an application, it is important to understand the source of the timestamps and its 

accuracy. For software-based platforms, the source of time is usually the system time or a time derived 

from it. For hardware devices, it is an internal increment register-based timer (see Section 3.1.1, Figure 

3.3). In both cases, the accuracy of the time source is affected by two main factors: the stability of the 

oscillator used and the synchronisation method. 

If conventional clock crystals are used, their frequency may change abruptly based on changes in 

ambient temperature. It is therefore recommended to use a temperature compensated crystal 

oscillator (TCXO) or at least a thermostatic crystal oscillator (OCXO). Therefore, if high measurement 

accuracies are needed, it is strongly recommended to verify the accuracy and stability of the crystals 

used on the hardware motherboards before selecting a specific platform. 



Practical Considerations 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

22 

4.5 How the Time Source Is Synchronised 

One of the most important factors affecting the accuracy of a time source is how it is synchronised. If 

the time source is not synchronised at all, then its accuracy gradually deteriorates over time due to 

clock drift and clock jitter (see Sections 3.1.1 and 3.1.2). The time source should therefore be 

synchronised by at least one of the commonly used methods (NTP, PTP, or GPS). 

For all software-based platforms where system time is used as the time source, it is relatively easy to 

activate system time synchronisation using the NTP protocol. If the system also has a network card 

with hardware support for PTP, and other devices on the path support it, then the accuracy of system 

time synchronisation can be further improved using standard software tools such as ptp4l and phc2sys 

[Ténart_2020]. In this way, even for software-based platforms, relatively high synchronisation 

accuracies can be achieved. 

In the case of hardware-based platforms, it is again possible to use standard time synchronisation 

tools using NTP or PTP if the manufacturer adds the necessary functionality and interface. However, 

for the platforms tested so far, the authors have not encountered such a standard interface, and 

manufacturers often choose their own (closed) implementation. 

For INT applications where high measurement accuracy is required, it is recommended to synchronise 

the time source using PTP or GPS. Unfortunately, PTP support is not yet sufficiently widespread and 

implemented at the switch level. Similarly, synchronisation using GPS has its own problems (e.g., 

connecting an external antenna or backup). In such cases, NTP can be used as an alternative, but the 

quality of synchronisation may well not be sufficient for the specific application. 

 

 



 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

23 

5 Conclusions 

This white paper has surveyed existing P4-programmable platforms and explored their capabilities in 

terms of handling timestamps and clock synchronisation. 

Currently, there are a number of different P4-programmable platforms, executable at different 

software levels or hardware-accelerated, where the P4 pipeline is implemented at the SmartNIC level 

or by core silicon in the switch. 

The paper reports that existing platforms vary considerably in terms of support for timestamps. The 

differences are not only in the size and format of timestamps but also in the timing of when a 

timestamp is assigned to a packet during ingress and egress processing. 

The accuracy of the timestamp is significantly affected by the exact time source used and the way it is 

synchronised. All these parameters need to be taken into account, and the capabilities of the specific 

platform need to be permitted to reach the requirements of the application. 

An analysis of the available platforms shows that many of them do not yet support native timestamps 

and clock synchronisation (this applies especially to software-based platforms) and need to be 

programmed. 

For all the SmartNIC-based platforms studied, timestamping is implemented, but the way their source 

is synchronised differs. While for some, there is no synchronisation at all, for others, only proprietary 

NTP-based synchronisation or an external PPS signal is used (Netcope P4). 

An interesting case with support for timestamps and clock synchronisation is Intel’s Tofino chip-based 

platform, which supports PTP synchronisation, including its distribution in Transparent Clock and 

Boundary Clock modes. The only drawback of this platform is the 48-bit timestamp (representing the 

number of nanoseconds), which overflows on average once every three days. 

In the future, support for timestamps and clock synchronisation can be expected to improve on 

available platforms. For example, it would be very beneficial to standardise in the aforementioned 

platforms the format, scope, and interpretation of timestamps. Furthermore, evolving from NTP to a 

more accurate way of clock synchronisation based on PTP or newer is hoped for. Finally, it would also 

be useful to add interface support to hardware platforms towards standard and open software tools 

(such as ptp4l and phc2sys) and make the clock synchronisation process transparent and simple. 

 

 



 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

24 

Appendix A P4-Programmable Platforms and Support 
for Timestamping/Clock Synchronisation 

The original version of the P4 language, labelled v14, defined not only how to describe the 

programmable parts of the switch, such as the Parser and Match-Action Tables, but also the 

underlying/reference architecture of the target device, referred to as the “abstract switch model”. 

With the advent of version 16 of the language, however, important changes have been made. The 

language definition is strictly separated from the target architecture (targets). The specification 

focuses only on describing the basic programmable parts such as Parser, Match-Action Tables, and 

Deparser. The way these programmable parts are integrated within the target architecture, and how 

they are interfaced with fixed blocks, are left to the device manufacturer. Any specific functions are 

decoupled from the language using so-called extern blocks. 

This step has enabled a significant extension of the P4 language not only to the switch area but also 

to SmartNICs or other network devices with architecture different from conventional switches, 

including pure software platforms based on different technologies (DPDK, eBPF, XDP, TC). The 

manufacturer of such P4-programmable devices has to provide the user not only with the specification 

of the architecture used but also with the backend part of the P4 compiler, which is used to translate 

the P4 code into the target platform. 

The following sections give brief descriptions of the existing platforms and backend parts of compilers 

that are currently available. The descriptions focus primarily on their support in terms of timestamps 

and clock synchronisation. They discuss whether and in which parts of the architecture a timestamp 

can be obtained for a packet. They also consider the source of these timestamps and how it is 

synchronised. 

The platforms are divided into the following categories: 

• Software-based platforms. 

• P4-programmable SmartNICs. 

• P4-programmable switches. 



Appendix A P4-Programmable Platforms and Support for Timestamping/Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

25 

A.1 Software-Based platforms 

A.1.1 BMv2 

Behavioral model version 2 (BMv2) is a reference P4 software switch meant to be used as a tool for 

developing, testing, and debugging P4 data plane and control plane software written for them [BMv2]. 

It is based on the v1model [V1M], which corresponds to the original “abstract switch model” of P4.14 

and allows easier translation of original P4.14 programs to P4.16. The v1model is made up of the 

Parser, Ingress Pipeline, Traffic Manager, Egress Pipeline, and Deparser blocks (see Figure A.1). Within 

BMv2 it is implemented as a “simple_switch” program. 

 

Figure A.1: v1model architecture 

For completeness, a new generic switch architecture specification called Portable Switch Architecture 

(PSA) has also been created in P4.16 and is still in the draft stage [PSA]. BMv2 will implement it as a 

program called “psa_switch”. Compared with the v1model, PSA is extended with a custom Parser and 

Deparser block in both the Ingress and Egress Pipeline (see Figure A.2). 

 

Figure A.2: PSA architecture 

A.1.1.1 Mapping P4 Architectures to Hardware 

It is important to understand how these architectures map to real hardware. In all software-based 

platforms, the hardware is usually a computer equipped with a network card with one or more 

network interfaces. Incoming packets enter the network card through the network interface and are 

subsequently transferred through the DMA to Host RAM. The CPU retrieves the packets from Host 



Appendix A P4-Programmable Platforms and Support for Timestamping/Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

26 

RAM and performs processing. If the packet is also to be sent at the end of processing, it is stored back 

in a specific area of Host RAM. From there, the network card reads it using DMA transfers and then 

sends it via the network interface (see Figure A.3). 

 

Figure A.3: Hardware architecture 

Packet processing can be accelerated, if necessary, by distributing network flows to independent CPU 

cores. For this purpose, dedicated network cards with support for Receive Side Scaling (RSS) 

technology and independent DMA channels are required [RSS]. 

CPU cores run not only the packet processing applications but also the operating system. In 

conventional computer systems, packets are first processed through the network card driver and 

network stack inside the operating system kernel (kernel space) and then passed to the application (in 

user space). In the case of BMv2, the architecture of the v1 (or PSA) model and the generated P4 

program is fully simulated at the application level in user space (see Figure A.4). 



Appendix A P4-Programmable Platforms and Support for Timestamping/Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

27 

 

Figure A.4: BMv2 software architecture 

A.1.1.2 Timestamps and Clock Synchronisation 

With the v1model: 

• When a packet arrives at the Ingress Pipeline, it is assigned a 48-bit timestamp indicating the 

number of microseconds since the simple_switch program started. Similarly when a packet 

enters the Egress Pipeline. Both timestamps are made available to the control program 

through standard metadata called ingress_global_timestamp and egress_global_timestamp. 

• Within the BMv2 model, the source of the timestamps is a local timer measuring the number 

of microseconds since the start of program execution. If the user requires better global 

synchronisation, it is recommended to modify the BMv2 source code and use, e.g., system 

time, NTP, PTP, or HUYGENS [BMv2_TimeSync] [HUYGENS]. 

With PSA: 

• Similar to the v1model, packets are given two timestamps when the packet enters the Ingress 

and Egress Pipelines. According to the specification, the Ingress timestamp should be assigned 

to the packet as close as possible to the packet’s entry into the device itself, but no later than 

the entry into the Parser block. The specification does not define the number of bits to 

represent the timestamp and leaves it up to the manufacturer. The specification also does not 

require any specific way of synchronising the timestamp source. 

Although BMv2 is described as a multi-threaded program, its processing capabilities through multiple 

cores are limited, and the overall performance is in the order of Gbps [BMv2_Performance]. Note: The 

goal of BMv2 was not to achieve high performance but to provide a quality simulator for P4 program 

developers, and this goal has been met. 



Appendix A P4-Programmable Platforms and Support for Timestamping/Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

28 

The latency of a packet passing through the overall platform is variable and ranges from tens to 

hundreds of microseconds, depending on how the receiving and transmitting parts are implemented, 

the use of interrupts, and other factors. The actual passage of a packet through the kernel network 

stack is around 2 x ~26 us [Ahmad_2020]. 

Throughput and latency problems are addressed by competing P4 compilers using e.g., DPDK, eBPF, 

or XDP technologies. 

A.1.2 T4P4S 

Translator for P4 Switches (T4P4S) is another open-source software switch [T4P4Sg]. It converts P4 

language source code into Data Plane Development Kit (DPDK) application code [T4P4S]. The v1model 

is used as the target architecture. One of the main advantages of the DPDK application is that the 

kernel network stack is bypassed completely during packet processing, and instead of the regular 

kernel device drivers, their alternatives in user space are used, called Poll Mode Drivers (see Figure 

A.5). This allows faster packet processing (lower latency) and also higher throughput. T4P4S thus forms 

an interesting alternative to BMv2, able to achieve throughput in the order of tens of Gbps [T4P4S]. 

 

Figure A.5: T4P4S software architecture 

A.1.2.1 Timestamps and Clock Synchronisation 

Unfortunately, timestamps have not been implemented in the current version. According to the 

v1model definition, standard metadata includes timestamps, but the compiler keeps them 

uninitialised. 



Appendix A P4-Programmable Platforms and Support for Timestamping/Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

29 

A.1.3 p4c-dpdk 

The p4c-dpdk is an alternative open-source DPDK backend [p4c-dpdk] [p4c-dpdkg] with a similar 

software architecture to T4P4S (see Figure A.5). It translates the P4.16 programs to DPDK API to 

configure the DPDK software switch (SWX) pipeline [SWX]. Similar to T4P4S, it translates the P4 

program to a representation that conforms to the DPDK SWX pipeline and generates the “spec” file to 

configure the DPDK pipeline. So, the output of the compiler is not the native DPDK code but the 

configuration that is interpreted through the DPDK pipeline. PSA is used as the target architecture. 

A.1.3.1 Timestamps and Clock Synchronisation 

Similar to T4P4S, the timestamps defined in PSA architecture have not been implemented, and the 

current version of the compiler keeps them uninitialised to zeros. 

A.1.4 p4c-ebpf 

This backend translates the P4.16 source code into an extended Berkeley Packet Filter (eBPF) program 

(a subset of C language) [eBPF]. If the resulting program passes strict verification, it can be run inside 

the Linux kernel, e.g., as a user-programmable packet filter within the kernel’s Traffic Control (TC) 

subsystem. This approach allows P4 programs to run at the kernel level to achieve lower processing 

latency (see Figure A.6). 

 

Figure A.6: eBPF software architecture 

The target architecture is the eBPF model (see Figure A.7), which is composed of programmable Parser 

and Match-Action blocks [EBPFm]. Since eBPF is used only in the form of a packet filter, the 

architecture does not contain a Deparser, and the primary output of the pipeline is a boolean 

true/false value defining whether or not to drop an incoming packet. 



Appendix A P4-Programmable Platforms and Support for Timestamping/Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

30 

 

Figure A.7: eBPF model architecture 

A.1.4.1 Timestamps and Clock Synchronisation 

Unfortunately, there is no support for timestamps or clock synchronisation in this model. 

A.1.5 p4c-xdp 

XDP (eXpress Data Path) is a technology that allows the eBPF program already at the device driver 

level to run and incoming packets to process before they enter the kernel network stack (see Figure 

A.8) [XDP]. In contrast to the eBPF filter, which is part of the TC subsystem, packets can also be edited 

in XDP and forwarded to specified output ports. In addition, placing XDP at the device driver level 

further reduces packet processing latency. 

 

Figure A.8: XDP software architecture 



Appendix A P4-Programmable Platforms and Support for Timestamping/Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

31 

The p4c-xdp backend, like p4c-ebpf, translates the P4.16 source code into an eBPF program. However, 

the XDP model (see Figure A.9) is used here as the target architecture, which also includes a Deparser 

block [XDPm]. Thus, it is also possible to modify the input packets, including 

encapsulation/decapsulation. 

 

Figure A.9: XDP model architecture 

A.1.5.1 Timestamps and Clock Synchronisation 

In contrast to common switch architectures such as v1model or PSA, timestamps are not available as 

part of the metadata but can only be obtained by calling the external bpf_ktime_get_ns() function, 

which returns a number indicating the number of nanoseconds since system boot [KTIME]. Despite 

the fact that this function returns a 64-bit number, the XDP model so far only uses the lower 32 bits, 

and thus it overflows approximately once per 4 seconds. 

A.1.6 p4c-ubpf 

For completeness, there is also uBPF (userspace BPF) and the corresponding p4c-ubpf backend [uBPF]. 

This is an alternative to eBPF, where the generated program is executed (interpreted) in user space. 

Compared with eBPF or XDP, there are no such strict restrictions on, e.g., stack size, and debugging of 

the generated program is also more friendly. uBPF can then be used in any user space application, 

including the DPDK environment, to implement packet filters. 

The target architecture of the p4c-ubpf backend is the uBPF model (see Figure A.10), which includes 

a Deparser, and it is almost identical to the XDP model (except for some changes at metadata level) 

[uBPFm]. It is thus possible to modify input packets, including encapsulation/decapsulation. 



Appendix A P4-Programmable Platforms and Support for Timestamping/Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

32 

 

Figure A.10: uBPF model architecture 

A.1.6.1 Timestamps and Clock Synchronisation 

Similar to XDP, timestamps are not available as part of the metadata but can be obtained by calling an 

external function ubpf_time_get_ns(), which returns a 48-bit number indicating the number of 

nanoseconds. 

A.2 P4-Programmable SmartNICs 

A.2.1 FPGA-Based 

A.2.1.1 P4 to NetFPGA 

P4 to NetFPGA represents a workflow and development environment for compiling P4 programs on 

the NetFPGA SUME board which provides four SFP+ ports [NetFPGA]. The development environment 

is built around the P4-SDnet compiler [SDNet] and the SDnet data plane builder from Xilinx, i.e., a 

licence for the Xilinx Vivado design suite is needed. Custom external functions can be implemented in 

a hardware description language (HDL) such as Verilog and included in the final FPGA program. This 

also allows external IP cores to be integrated as P4 externs in P4 programs. The P4 to NetFPGA 

toolchain supports P4.16 based on the SimpleSumeSwitch architecture [NetFPGAg]. 

The SimpleSumeSwitch model (see Figure A.11) consists of three programmable blocks – the Parser, 

Match-Action Tables, and Deparser – and one fixed Traffic Manager block. It is an ingress-pipeline-

only architecture, which is particularly suitable for the SmartNICs domain where a higher number of 

ports and switching between them is not expected. 



Appendix A P4-Programmable Platforms and Support for Timestamping/Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

33 

 

Figure A.11: SimpleSumeSwitch architecture 

Timestamps and Clock Synchronisation 

Timestamps are not part of the standard metadata but can be obtained through a dedicated external 

block. The timestamp source is a 64-bit counter running at the frequency of the input Ethernet 

interface (125 MHz for 1 Gbps or 156 MHz for 10 Gbps). The timestamp, therefore, indicates the 

number of ticks in units of 8 ns or 6.4 ns, depending on the interface used. 

In the default (simple) implementation, there is no clock drift correction [NetFPGAT1]. In later versions 

of the NetFPGA platform, the Direct Digital Synthesis technique (equivalent to the advanced circuit in 

Figure 3.3) is used for correction, with the possibility of adjusting the incremental constant and 

reducing clock drift. However, the incremental constant setting is implemented based on 

experimental comparison with another clock signal source, which reduces the resulting accuracy and 

ability to fully eliminate clock drift [NetFPGAT2]. 

In the current version of the platform, there is no synchronisation capability using NTP or PTP. While 

there is work focused directly on implementing IEEE 1588 PTP for the NetFPGA card [NetFPGAPTP], 

this is not directly part of the default development environment, and its availability may be limited. 

A.2.1.2 Netcope P4 

Netcope P4 is a commercial cloud service that creates FPGA firmware from P4 programs 

[Netcope_P4]. As a target platform, Netcope P4 supports FPGA boards from Netcope, Silicom, and 

Intel that are based on Xilinx or Intel FPGAs. The v1model is used as the target architecture for 

compiling P4 code but without egress pipeline support. This model is therefore architecturally very 

similar to SimpleSumeSwitch, but the structure of the standard metadata is more like v1model. 

Timestamps and Clock Synchronisation 

The architecture used assigns a timestamp to each incoming packet when it enters the MAC layer. This 

is then inserted into the P4 pipeline as part of the standard metadata called ingress_timestamp. Since 

the model does not contain an egress pipeline, there is no timestamp corresponding to the packet 

entering the egress part. 

The timestamp itself is 64 bits in size and represents time in nanoseconds. A hardware timer is used 

as the timestamp source, with the possibility of modifying the initial value and incremental constant 



Appendix A P4-Programmable Platforms and Support for Timestamping/Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

34 

(see Figure 3.3). The synchronisation of the time source (calculation of the incremental constant) is 

done either based on the Pulse Per Second (PPS) signal, fed from the GPS receiver to a special card 

input, or through the NTP protocol using Netcope proprietary software running on the host CPU. Time 

synchronisation via the IEEE 1588 PTP protocol is not yet supported within the Netcope development 

environment. 

A.2.2 NPU-Based 

Network processing units (NPUs) are software-programmable ASICs that are optimised for networking 

applications. They are usually part of standalone network devices or SmartNICs. 

A.2.2.1 Netronome 

Netronome network flow processing (NFP) silicons can be programmed with P4 or C [Netronome]. A 

C-based programming model is available that supports program functions to access payloads and 

allows P4 externs to be developed. The Agilio P4C SDK consists of a toolchain including a backend 

compiler, host software, and a full-featured integrated development environment (IDE). All current 

Agilio SmartNICs based on NFP-4000, NFP-5000, and NFP-6480 are supported. The v1model is used as 

a reference architecture for P4 programs. 

Timestamps and Clock Synchronisation 

The NFP platform assigns two different timestamps to each packet and includes them in 

intrinsic_metadata structure: (i) ingress_global_timestamp – a 64-bit value representing the time the 

packet entered the MAC layer, and (ii) current_global_timestamp – a 64-bit value representing the 

current global timestamp with respect to the time within the MAC block. For both timestamps, the 

most significant 32 -bits provide the time in seconds while the least significant 32 bits provide a 

number of nanoseconds [NetronomeTS]. The time is initialised when the host machine is powered on. 

At the time of writing (August 2022), the authors do not know what the source of the time is, whether 

it is possible to reduce its clock drift or whether it can be synchronised via NTP or PTP protocols. 

A.3 P4-Programmable Switches 

A.3.1 Intel/Barefoot Tofino-Based Switches 

The Intel/Barefoot Tofino ASIC implements the so-called Tofino Native Architecture (TNA), which 

comprises identical ingress and egress pipelines, including a configurable Parser, up to 12 processing 

stages, and a configurable Deparser in each, on each end of the switching matrix [Tofino]. Note that 

this architecture is extremely similar to that of PSA, but the resources of each pipeline are shared 

among a small number of physical ports, and with this being a representation of a hardware circuit, 

the processing stages cannot grow as much as desired but are constrained by the available resources 

in the ASIC. Compared with PSA, it provides support for advanced device capabilities, including a richer 

set of externs such as RegisterAction extern, low-pass filters, weighted random early discard externs, 

powerful hash externs that can compute CRC based on user-defined polynomials, ParserCounter, and 

others. 



Appendix A P4-Programmable Platforms and Support for Timestamping/Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

35 

 

Figure A.12: Tofino native architecture 

Timestamps and Clock Synchronisation 

Tofino chips have their own internal clock, used in conjunction with a configurable offset and step 

value to eliminate clock drift and maintain an internal data structure counting nanoseconds from a 

certain epoch. The timestamps derived from these global clocks have a resolution of 48 bits and are 

captured in different parts of the pipeline. First, a timestamp is assigned to the packet at the transition 

between the PHY and MAC layers of the physical ingress port and stored as part of the ingress intrinsic 

metadata structure. The second timestamp is assigned to the packet when it enters the ingress 

pipeline, and it is stored as part of the ingress intrinsic metadata from the Parser. The last timestamp 

is assigned to the packet when it enters the egress pipeline, and it is stored as part of the egress 

intrinsic metadata from the Parser. 

In addition to these three timestamps, it is possible to use additional information about the time a 

packet spends inside a Traffic Manager block (when transitioning between ingress and egress 

pipelines). The user gets this information in the form of enq_tstamp (time taken when the packet is 

enqueued) and deq_timedelta (time delta between the packet’s enqueue and dequeue time) entries, 

which are stored as part of the egress intrinsic metadata. In contrast to the 48-bit primary timestamps, 

these entries are 18 bits long. 

Tofino chips are also fully prepared to support clock synchronisation via the IEEE 1588 PTP protocol. 

As mentioned above, a timestamp can be taken for any incoming packet when it enters the MAC layer. 

On the other hand, the timestamp at the time an outgoing packet transitions between the MAC and 

PHY layers can only be recorded for selected outgoing packets. The user must specify this intent by 

setting the capture_tstamp_on_tx bit within the egress intrinsic metadata for the output port. Then 

the captured timestamp is readable from the control plane side. 

The switch architecture is also ready to support Transparent Clock (End-to-End, Peer-to-Peer) and 

Boundary Clock modes. The correctionField and UDP checksum can be updated when sending selected 

event message packets (Sync, DelayReq). The user specifies this intent by setting the 

update_delay_on_tx bit within the egress intrinsic metadata for the output port. Subsequently, the 

user must also supply information about the offset of the UDP checksum and correctionField entries, 

including the new correctionField value, via the PTP metadata structure. 

Although the format of the hardware timestamps differs from the IEEE 1588 standard (48 bits counting 

a number of nanoseconds vs. 80 bits containing a number of seconds and number of nanoseconds 

within a second), it can be expected that the necessary conversions will be performed at the control 

plane level since the frequency of PTP messages is in the order of units per second. 



Appendix A P4-Programmable Platforms and Support for Timestamping/Clock Synchronisation 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

36 

A.3.2 Others 

Gradually, other manufacturers of P4-programmable switches are appearing. One example is the 

Spectrum 2 switch from NVidia/Mellanox. The P4 architecture of this target differs from common 

models such as PSA (see Figure A.13). It offers up to 5 programmable blocks – one Parser and four 

Control blocks (two in the ingress and two in the egress portion of the switch). The individual Control 

blocks typically differ in terms of P4 programmability [Mellanox]. Unfortunately, at the time of writing, 

the authors do not have detailed information about the capabilities of this architecture from a 

timestamps and clock synchronisation perspective. Similarly, there may be other manufacturers of P4-

programmable switches and their architectures for which the authors do not have sufficient 

information. 

 

Figure A.13: Spectrum 2 architecture [Mellanox] 

 

 



 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

37 

References 

[ACW] https://en.wikipedia.org/wiki/Atomic_clock  

[Ahmad_2020] M. Ahmad & A. Rizvi, “DPDK for ultra low latency applications”, Userspace 

Summit, 2020, [Online]. Available at: 

https://www.youtube.com/watch?v=Rro5fl0sD0M, (Accessed: August 

2021) 

[Baldi_2000] M. Baldi and Y. Ofek, “End-to-end delay analysis of videoconferencing over 

packet-switched networks,” in IEEE/ACM Transactions on Networking, vol. 

8, no. 4, pp. 479–492, Aug. 2000, doi: 10.1109/90.865076 

[BMv2] https://github.com/p4lang/behavioral-model  

[BMv2_Performance] Performance of bmv2 [Online]. Available at: 

https://github.com/p4lang/behavioral-

model/blob/main/docs/performance.md, (Accessed: August 2021) 

[BMv2_TimeSync] The BMv2 Simple Switch target [Online]. Available at: 

https://github.com/p4lang/behavioral-

model/blob/main/docs/simple_switch.md, (Accessed: August 2021) 

[DPTP] Pravein Govindan Kannan, Raj Joshi, Mun Choon Chan, “Precise Time-

synchronization in the Data-Plane using Programmable Switching ASICs”, 

SOSR ’19: Proceedings of the 2019 ACM Symposium on SDN Research, DPTP 

Github 

https://github.com/praveingk/DPTP  

[eBPF] https://github.com/p4lang/p4c/tree/main/backends/ebpf  

[eBPFm] https://github.com/p4lang/p4c/blob/main/backends/ebpf/ 

p4include/ebpf_model.p4 

[GPS] https://en.wikipedia.org/wiki/Satellite_navigation  

[HUYGENS] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel 

Rosenblum and Amin Vahdat, “Exploiting a natural network effect for 

scalable, fine-grained clock synchronization”. In Proceedings of NSDI, 2018. 

Available at: 

https://www.usenix.org/conference/nsdi18/presentation/geng  

[IEEE_1588-2008] IEEE Standard for a Precision Clock Synchronization Protocol for Networked 

Measurement and Control Systems, IEEE Instrumentation and 

Measurement Society, ISBN 978-0-7381-5400-8, 2008 

[IEEE_1588-2019] IEEE Standard for a Precision Clock Synchronization Protocol for Networked 

Measurement and Control Systems, IEEE Instrumentation and 

Measurement Society, ISBN 978-1-5044-6341-6, 2019 

[IEEES] https://spectrum.ieee.org/breaking-the-latency-barrier  

https://en.wikipedia.org/wiki/Atomic_clock
https://www.youtube.com/watch?v=Rro5fl0sD0M
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model/blob/main/docs/performance.md
https://github.com/p4lang/behavioral-model/blob/main/docs/performance.md
https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md
https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md
https://github.com/praveingk/DPTP
https://github.com/p4lang/p4c/tree/main/backends/ebpf
https://github.com/p4lang/p4c/blob/main/backends/ebpf/p4include/ebpf_model.p4
https://github.com/p4lang/p4c/blob/main/backends/ebpf/p4include/ebpf_model.p4
https://en.wikipedia.org/wiki/Satellite_navigation
https://www.usenix.org/conference/nsdi18/presentation/geng
https://spectrum.ieee.org/breaking-the-latency-barrier


References 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

38 

[INT_SPEC1.0] In-band Network Telemetry (INT) Dataplane Specification v1.0, 

https://github.com/p4lang/p4-

applications/blob/master/docs/INT_v1_0.pdf  

[INT_SPEC2.0] In-band Network Telemetry (INT) Dataplane Specification v2.0, 

https://github.com/p4lang/p4-

applications/blob/master/docs/INT_v2_0.pdf  

[INT_SPEC2.1] In-band Network Telemetry (INT) Dataplane Specification v2.1, 

https://github.com/p4lang/p4-

applications/blob/master/docs/INT_v2_1.pdf  

[KTIME] https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md#3-

bpf_ktime_get_ns  

[LoLa] https://lola.conts.it/  

[Mellanox] https://opennetworking.org/wp-content/uploads/2020/04/Itzik-Ashkenazi-

Slide-Deck.pdf  

[Mitchell_2019] Albert Mitchell, Precision Time Protocol – deep dive and use cases, BRKIOT-

2517, CISCO, 2019. Available at: 

https://www.ciscolive.com/c/dam/r/ciscolive/us/docs/2019/pdf/BRKIOT-

2517.pdf  

[Netcope_P4] Netcope Technologies, a.s., Netcope P4 User Guide (v 4.6), February 24, 

2020 

[NetFPGA] https://cs344-stanford.github.io/lectures/Lecture-3-dev-tools.pdf  

[NetFPGAg] https://github.com/NetFPGA/P4-NetFPGA-public/wiki/Workflow-Overview  

[NetFPGAPTP] S. S. W. Lee, T. Lee and K. Li, “NetFPGA based IEEE 1588 module for time-

synchronized software-defined networking”, 2016 6th International 

Conference on Information Communication and Management (ICICM), 

2016, pp. 253–259, doi: 10.1109/INFOCOMAN.2016.7784253. 

[NetFPGAT1] G. Antichi, S. Giordano, D. J. Miller and A. W. Moore, “Enabling Open-

Source High Speed Network Monitoring on NetFPGA”, 2012 IEEE Network 

Operations and Management Symposium, 2012, pp. 1029–1035, doi: 

10.1109/NOMS.2012.6212025. 

[NetFPGAT2] G. Antichi, D. J. Miller & S. Giordano, “An Open-Source Hardware Module 

for High-Speed Network Monitoring on NetFPGA”, 2010 [Online]. Available 

at: 

https://www.cl.cam.ac.uk/research/srg/netos/projects/netfpga/workshop/

eurodev2010/antichi-wire/antichi.pdf  

[Netronome] https://www.netronome.com/products/smartnic/overview/  

[NetronomeTS] J.-O. Andersson, “Offloading INTCollector Events with P4” (Dissertation), 

2019. Retrieved from: 

http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-74508  

[NTPF] https://www.incibe-cert.es/en/blog/ntp-sntp-and-ptp-what-time-

synchronization-do-i-need  

[P4_Language] https://p4.org  

[p4c-dpdk] C. Dumitrescu, A. Bas, “Enabling P4 in DPDK”, 2019 [Online]. Available at: 

https://www.youtube.com/watch?v=uI29_q-SoPU (Accessed: August 2021) 

[p4c-dpdkg] https://github.com/p4lang/p4c/tree/main/backends/dpdk  

[PPS] Xiaoji Niu, Kunlun Yan, Tisheng Zhang, Quan Zhang, Hongping Zhang & 

Jingnan Liu. (2014). “Quality evaluation of the pulse per second (PPS) 

https://github.com/p4lang/p4-applications/blob/master/docs/INT_v1_0.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v1_0.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_0.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_0.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT_v2_1.pdf
https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md#3-bpf_ktime_get_ns
https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md#3-bpf_ktime_get_ns
https://lola.conts.it/
https://opennetworking.org/wp-content/uploads/2020/04/Itzik-Ashkenazi-Slide-Deck.pdf
https://opennetworking.org/wp-content/uploads/2020/04/Itzik-Ashkenazi-Slide-Deck.pdf
https://www.ciscolive.com/c/dam/r/ciscolive/us/docs/2019/pdf/BRKIOT-2517.pdf
https://www.ciscolive.com/c/dam/r/ciscolive/us/docs/2019/pdf/BRKIOT-2517.pdf
https://cs344-stanford.github.io/lectures/Lecture-3-dev-tools.pdf
https://github.com/NetFPGA/P4-NetFPGA-public/wiki/Workflow-Overview
https://www.cl.cam.ac.uk/research/srg/netos/projects/netfpga/workshop/eurodev2010/antichi-wire/antichi.pdf
https://www.cl.cam.ac.uk/research/srg/netos/projects/netfpga/workshop/eurodev2010/antichi-wire/antichi.pdf
https://www.netronome.com/products/smartnic/overview/
http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-74508
https://www.incibe-cert.es/en/blog/ntp-sntp-and-ptp-what-time-synchronization-do-i-need
https://www.incibe-cert.es/en/blog/ntp-sntp-and-ptp-what-time-synchronization-do-i-need
https://p4.org/
https://www.youtube.com/watch?v=uI29_q-SoPU
https://github.com/p4lang/p4c/tree/main/backends/dpdk


References 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

39 

signals from commercial GNSS receivers”. GPS Solutions. 19. 141-150. 

10.1007/s10291-014-0375-7.  

[PSA] https://p4.org/p4-spec/docs/PSA-v1.1.0.html  

[RFC_1059] RFC 1059 Network Time Protocol (Version 1) Specification and 

Implementation 

https://datatracker.ietf.org/doc/rfc1059/  

[RFC_3393] RFC 3393 IP Packet Delay Variation Metric for IPPM 

https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ipdv  

[RFC_5905] RFC 5905 Network Time Protocol Version 4: Protocol and Algorithms 

Specification 

https://datatracker.ietf.org/doc/rfc5905/  

[RSS] https://docs.microsoft.com/en-us/windows-

hardware/drivers/network/introduction-to-receive-side-scaling  

[SDNet] https://www.xilinx.com/support/documentation-navigation/development-

tools/software-development/sdnet.html  

[SWX] https://doc.dpdk.org/guides/prog_guide/packet_framework. 

html?highlight=swx%20pipeline#the-software-switch-swx-pipeline 

[T4P4S] P. Vörös, D. Horpácsi, R. Kitlei, D. Leskó, M. Tejfel and S. Laki, “T4P4S: A 

Target-independent Compiler for Protocol-independent Packet 

Processors”, 2018 IEEE 19th International Conference on High Performance 

Switching and Routing (HPSR), 2018, pp. 1–8, doi: 

10.1109/HPSR.2018.8850752. 

[T4P4Sg] https://github.com/P4ELTE/t4p4s  

[Ténart_2020] Antoine Ténart, “Precision time protocol (PTP) and packet timestamping in 

Linux”, Embedded Linux Conference Europe, October 2020. Available at: 

https://static.sched.com/hosted_files/osseu2020/c5/tenart-timestamping-

and-ptp-in-linux.pdf  

[Time_Def_Stds] https://www.ipses.com/eng/in-depth-analysis/standard-of-time-

definition/  

[Tofino] https://www.intel.com/content/www/us/en/products/network-

io/programmable-ethernet-switch/tofino-2-series.html  

[uBPF] https://github.com/p4lang/p4c/tree/main/backends/ubpf  

[uBPFm] https://github.com/p4lang/p4c/blob/main/backends/ubpf/ 

p4include/ubpf_model.p4 

[UTC] https://en.wikipedia.org/wiki/Coordinated_Universal_Time  

[V1M] https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4  

[VER] https://www.verizon.com/business/terms/latency/  

[Wang_2008] Lei Wang, J. Fernandez, J. Burgett, R. W. Conners and Yilu Liu, “An 

evaluation of network time protocol for clock synchronization in wide area 

measurements”, 2008 IEEE Power and Energy Society General Meeting – 

Conversion and Delivery of Electrical Energy in the 21st Century, 2008, pp. 

1–5, doi: 10.1109/PES.2008.4596234. 

[WP_INT_Tests] DPP White Paper: In-band Network Telemetry Tests in NREN Networks 

https://www.geant.org/Resources/Documents/GN4-3_White-Paper_In-

Band-Network-Telemetry.pdf  

https://p4.org/p4-spec/docs/PSA-v1.1.0.html
https://datatracker.ietf.org/doc/rfc1059/
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-ipdv
https://datatracker.ietf.org/doc/rfc5905/
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/introduction-to-receive-side-scaling
https://www.xilinx.com/support/documentation-navigation/development-tools/software-development/sdnet.html
https://www.xilinx.com/support/documentation-navigation/development-tools/software-development/sdnet.html
https://doc.dpdk.org/guides/prog_guide/packet_framework.html?highlight=swx%20pipeline#the-software-switch-swx-pipeline
https://doc.dpdk.org/guides/prog_guide/packet_framework.html?highlight=swx%20pipeline#the-software-switch-swx-pipeline
https://github.com/P4ELTE/t4p4s
https://static.sched.com/hosted_files/osseu2020/c5/tenart-timestamping-and-ptp-in-linux.pdf
https://static.sched.com/hosted_files/osseu2020/c5/tenart-timestamping-and-ptp-in-linux.pdf
https://www.ipses.com/eng/in-depth-analysis/standard-of-time-definition/
https://www.ipses.com/eng/in-depth-analysis/standard-of-time-definition/
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://github.com/p4lang/p4c/tree/main/backends/ubpf
https://github.com/p4lang/p4c/blob/main/backends/ubpf/p4include/ubpf_model.p4
https://github.com/p4lang/p4c/blob/main/backends/ubpf/p4include/ubpf_model.p4
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4
https://www.verizon.com/business/terms/latency/
https://www.geant.org/Resources/Documents/GN4-3_White-Paper_In-Band-Network-Telemetry.pdf
https://www.geant.org/Resources/Documents/GN4-3_White-Paper_In-Band-Network-Telemetry.pdf


References 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

40 

[XDP] W. Tu, F. Ruffy and M. Budiu, “Linux Network Programming with P4”. In 

Linux Plumbers’ Conference 2018, Vancouver, Canada, 2018. Available at: 

http://vger.kernel.org/lpc_net2018_talks/p4c-xdp-lpc18-paper.pdf  

[XDPm] https://github.com/vmware/p4c-

xdp/blob/master/p4include/xdp_model.p4  
 

http://vger.kernel.org/lpc_net2018_talks/p4c-xdp-lpc18-paper.pdf
https://github.com/vmware/p4c-xdp/blob/master/p4include/xdp_model.p4
https://github.com/vmware/p4c-xdp/blob/master/p4include/xdp_model.p4


 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

41 

Glossary 

API Application Programming Interface 

AR/VR Augmented Reality / Virtual Reality 

ASIC Application Specific Integrated Circuit 

BC Boundary Clock 

BMC Best Master Clock 

BMv2 Behavioral model version 2 

BPF Berkeley Packet Filter 

CDN Content Delivery Network 

CPU Central Processing Unit 

CRC Cyclic Redundancy Check 

DMA Direct Memory Access 

DPDK Data Plane Development Kit 

DPP Data Plane Programming 

eBPF extended Berkeley Packet Filter 

FBK Fondazione Bruno Kessler 

FPGA Field Programmable Gate Array 

GNSS Global Navigation Satellite System 

GPS Global Positioning System 

HDL Hardware Description Language 

IDE Integrated Development Environment 

IEEE Institute of Electrical and Electronics Engineers 

IETF Internet Engineering Task Force 

INT In-band Network Telemetry 

IoT Internet of Things 

IP Internet Protocol 

IPDV IP Packet Delay Variation 

IPPM IP Performance Metrics 

LAN Local Area Network 

LoLa Low Latency 

MAC Media Access Control 

MAN Metropolitan Area Network 

NFP Network Flow Processing 

NIC Network Interface Card 

NPU Network Processing Unit 

NREN National Research and Education Network 

NTP Network Time Protocol 

NTUA National Technical University of Athens 



Glossary 

White Paper: Timestamping and Clock 
Synchronisation in P4-Programmable 
Platforms 
Document ID: GN4-3-22-49EC10 

42 

OCXO Oven Controlled Crystal Oscillator 

OWD One-Way Delay 

P4 Programming Protocol-independent Packet Processors – a domain-specific language 

for network devices, specifying how data plane devices (switches, NICs, routers, 

filters, etc.) process packets 

PHY Physical 

PPM Parts Per Million 

PPS Pulse Per Second 

PSA Portable Switch Architecture 

PTP Precision Time Protocol 

QoS Quality of Service 

R&E Research and Education 

RAM Random Access Memory 

RFC Request for Comment (IETF) 

RSS Receive Side Scaling 

SDK Software Development Kit 

SFP+ enhanced Small Form Factor Pluggable 

T Task 

T4P4S Translator for P4 Switches 

TC Traffic Control 

TC-E2E End-to-End Transparent Clock 

TC-P2P Peer-to-Peer Transparent Clock 

TCXO Temperature Compensated Crystal Oscillator 

TNA Tofino Native Architecture 

uBPF userspace Berkeley Packet Filter 

UDP User Datagram Protocol 

UTC Coordinated Universal Time 

UvA University of Amsterdam 

VFIO Virtual Function Input/Output 

WP Work Package 

WP6 GN4-3 Work Package 6 Network Technologies and Services Development 

WP6 T1 WP6 Task 1 Network Technology Evolution 

XDP eXpress Data Path 

 


