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Abstract 
Zero-footprint monitoring is monitoring performed without the use of additional dedicated hardware elements. This 
document describes a set of new network element features that enable scalable and vendor-independent network service 
performance verification. It is written in a cookbook style and describes the use of standard protocols on network elements 
and virtual services on top of network elements, as well as the use of streaming telemetry for result transportation 
towards result repositories. 
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Executive Summary 

For a long time, gathering network service performance parameters in multi-vendor environments 
was a challenge, requiring either the use of dedicated hardware probes, which increased the 
hardware footprint and the complexity of an organisation’s network deployment, or the use of 
proprietary, vendor-specific and non-interoperable features on network elements.  

More recently, some standard protocols for network performance evaluation, such as the Two-Way 
Active Measurement Protocol (TWAMP), have started to appear as a regular feature in network 
elements of different vendors. This, together with the emerging virtualisation trend, has enabled the 
use of standard-based protocols for performance evaluation across a range of different devices of 
various vendors without the use of additional equipment, in a model known as zero-footprint 
monitoring.   

This document describes the current state of the art of standard network service performance 
monitoring protocols and how they can be configured on different platforms (Juniper, Cisco, Linux) 
as well as on virtual services on top of Cisco routers, which are an interesting recent development. It 
is written in a cookbook style which allows the reader to quickly test all the proposed monitoring 
methods and use them in operational environments.  

Besides this standards-based approach to network service performance monitoring, guidelines are 
provided for transferring the results of the measurements using the emerging streaming telemetry 
approach. As it is expected that streaming telemetry will soon replace the Simple Network 
Management Protocol (SNMP) as a method for gathering network monitoring data, this document 
also aims to be a useful resource for the early adopters of this technology. 
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1 Introduction 

Monitoring and performance verification are essential groups of processes in network service 
operations. These processes allow providers to verify the health of the products and services they 
are offering and the operation of the underlying infrastructure, and to prove the quality of the 
services (QoS) delivered to their users. Users might also wish to have insight into the performance of 
the services they use, especially in cases where strict QoS requirements apply.  

Such service-oriented performance views are increasingly important, especially given that modern 
network services are commonly virtualised, with the traffic of multiple users or customers 
multiplexed over the same physical links. With this type of service, it is impossible to estimate the 
quality of users’ experience or to verify the Service Level Agreement (SLA) by using legacy tools 
which only monitor physical links and network element operation. A situation can easily be 
envisaged where the physical link operates without any flaw or congestion, while on the other hand 
one or multiple users do not get proper service over that link due to a virtual network 
misconfiguration or some problem in the network virtualisation software stack. Therefore, new 
monitoring methods for performance verification within a network service are required. 

Verifying network service performance requires gathering well-known service performance 
indicators such as packet latency, latency variation (jitter) and/or packet loss rate between the 
service endpoints and comparing them to threshold values, or against historical data. Ten years ago, 
network performance monitoring often assumed the use of dedicated monitoring equipment in 
network PoPs and data centres. Monitoring probes, databases to hold results, and UI servers would 
have to be installed. Monitoring network service performance from each PoP meant the use of a 
separate monitoring probe/machine in each of these. Some examples of such architectures include 
the discontinued project RIPE TTM or perfSONAR versions developed before the GN4-1 project1.  

In recent years there have been several attempts to make the monitoring process more lightweight 
and automated, but also to decrease the size of the monitoring agents (e.g., the RIPE ATLAS project 
or the “small node” PMP service in the GÉANT and European NREN networks). With the emergence 
of virtualisation, it is now also possible to install some of the most popular tools on virtual machines 
or even as applications on containers, which may reside on network hardware. 

The decrease in monitoring probe size comes at a cost. The use of virtual appliances or lower-end 
hardware typically meant that capacity and available bandwidth measurements were of limited 
accuracy, especially on high-speed links (above 1Gbps). However, this does not necessarily present a 
problem, as bandwidth measurements must saturate a path with traffic in order to provide accurate 
capacity measurement results where available. Such measurements are intrusive and disrupt regular 
network service. This is why bandwidth measurements are performed rarely – and only before a 
service is in production – to test the path, or where there is a need to debug a network performance 

 
1 In recent years perfSONAR deployments on virtual machines or docker containers became common. 

https://www.ripe.net/analyse/archived-projects/ttm
https://atlas.ripe.net/
https://www.geant.org/Services/Connectivity_and_network/Pages/perfSONAR.aspx
https://hub.docker.com/u/perfsonar
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problem. On the other hand, gathering metrics such as packet loss, latency and latency variation 
continuously does not require high-end dedicated hardware and adds minimal overhead to the 
network traffic. Also, these three QoS metrics indirectly provide insights into any potential 
congestion in the network and their observed values are most often a direct consequence of 
congestion and buffering on some of the links on the path of a packet. Packet loss, latency and 
latency variation can reliably be monitored using standard OWAMP and TWAMP protocols, and 
small form factor devices. 

Although it is possible to monitor all key performance metrics using small-footprint hardware or 
even virtual machines, this approach still assumes that additional equipment (a small probe or a 
server to host the software or a virtual machine) will have to be installed and maintained in network 
PoPs. This increases the complexity of the PoP configuration and the number of potential in-person 
interventions which can be a problem in case of remote network PoPs. For network operators, the 
easiest solution is to monitor the network and services using the tools available on network 
elements.  

Until recently, equipment vendors used their proprietary non-interoperable solutions, e.g. 
Juniper RPM and Cisco IP SLA. However, in the last couple of years, new features have started to 
emerge on the most commonly used equipment, including support for standard interoperable 
protocols such as TWAMP and the possibility to install virtual services on network elements with 
either an operating system such as Ubuntu or a dedicated monitoring tool such as perfSONAR which 
use standard protocols. Using such features can enable detailed per-segment network service 
performance monitoring without the use of additional equipment – this is the zero-footprint 
monitoring approach.    

The purpose of this document is to show capabilities and limits in using zero-footprint performance 
monitoring tools on various network elements, to present the results of the interoperability tests 
conducted between them and to provide guidelines for typical usage scenarios. This document aims 
to provide a valuable source of information and a guideline for NRENs who wish to set up or 
redesign their performance monitoring systems. It also includes examples of configurations for the 
tools presented; While these tools can be configured manually via a CLI, there are clear benefits to 
adopting automation, e.g. in enabling greater efficiency and in providing configuration integrity. A 
discussion of the progress made towards Automation and Orchestration of Services in the GÉANT 
Community can be found in Deliverable D6.2. 

This document is structured as follows: Section 2 introduces basic information about the TWAMP 
protocol which is a de-facto standard for performance verification in IP networks. It describes the 
TWAMP capabilities of Juniper and Cisco devices, their limitations and configuration methods. The 
novel streaming telemetry method for sending measurement results towards result repositories 
where they are then available to visualisation tools is described as it applies to both vendors’ 
equipment. Section 2 also describes how to use virtual services (e.g. Linux VM) on top of Cisco 
routers. Section 3 addresses possible data collection on results repositories using the novel 
streaming telemetry mechanism. Finally, Section 4 describes the use of TWAMP monitoring and 
interoperability in a multi-vendor use-case, set up in the GÉANT GTS environment. 

 
 
 

https://tools.ietf.org/html/rfc4656
https://tools.ietf.org/html/rfc5357
https://www.juniper.net/documentation/en_US/junos/topics/concept/security-rpm-overview.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/12-2/44sg/configuration/guide/Wrapper-44SG/swipsla.html
https://tools.ietf.org/html/rfc5357
https://github.com/robertcsapo/cisco-ios-xe-ubuntu
https://github.com/CiscoIOx/perfsonar
https://www.geant.org/Projects/GEANT_Project_GN4-3/GN43_deliverables/D6-2_Automation-and-Orchestration-of-Services-in-the-GEANT-Community.pdf
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2 TWAMP Protocol 

The Two-Way Active Measurement Protocol (TWAMP) is an active measurement protocol defined 
in RFC5357. It is an extension of the older  One-Way Active Measurement Protocol  (OWAMP) 
specification which is capable of monitoring packet loss, latency and latency variation (jitter) 
between two hosts in each direction separately (one-way property). TWAMP adds two-way (round-
trip time) measurements to the OWAMP monitoring portfolio. It establishes a control connection 
between the two devices which run a TWAMP client and a TWAMP server (TWAMP endpoints) and 
separate test sessions where the probe packets are exchanged. Since OWAMP and TWAMP measure 
one-way performance metrics, the endpoints must be time-synchronised with both protocols, which 
can be an additional challenge if particularly accurate measurements are desired. Recently, TWAMP 
became a common part of the feature sets of the largest network equipment vendors. This enables 
performance measurements between the devices of different vendors (interoperability), which was 
not previously possible.  

Figure 2.1 below shows the key logical entities in TWAMP, including a Server which listens for 
measurement requests that come from the Clients (Session Senders). Probe packets are exchanged 
in both directions after the Control connection is established and monitoring configured. 

 

Figure 2.1: TWAMP architecture 

The TWAMP protocol has recently been implemented by leading router vendors such as Juniper and 
Cisco. The Juniper implementation includes both a TWAMP server and a client, which allows 
monitoring of network latency in a per-segment way between a pair of Juniper routers, one of which 
runs a TWAMP client and the other a TWAMP server. The measurement data are calculated by a 
TWAMP client.  

So far, Cisco have implemented only the TWAMP server in their routers so an external TWAMP client 
is needed to perform latency measurements. One possible solution for measuring delays on a per-
segment basis between Cisco routers could be to use the twping client from the perfSONAR toolkit, 
which has TWAMP sessions with all Cisco TWAMP servers on routers along a path. Another possible 
solution might be to install a virtual machine on a Cisco router (currently only some models support 
it) and then a TWAMP client on the VM (e.g. twping from perfSONAR). Furthermore, Cisco has 
introduced Guestshell, a virtualised Linux-based environment that may also be used for running 
TWAMP clients. 

 

https://tools.ietf.org/html/rfc5357
https://tools.ietf.org/html/rfc4656
http://docs.perfsonar.net/index.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/166/b_166_programmability_cg/guest_shell.html
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2.1 Juniper TWAMP 

This section briefly explains the way TWAMP can be configured and used on Juniper devices. 
Specifically, it provides information on how to configure TWAMP Juniper devices as TWAMP 
servers/clients and further explains how TWAMP measurements can be retrieved. The configuration 
may differ from one platform to another and depend on the software version. For the most accurate 
information about router configuration, the reader should refer to the configuration guides for their 
platform. More details about TWAMP on Juniper devices are available at the following link. 

2.1.1 TWAMP Configuration 

Figure 2.1 gives an example of the TWAMP server and client configuration on Juniper devices. Server 
configuration is simpler as it defines only the port on which the server listens to the requests and the 
set of IP addresses from which it expects the TWAMP requests (in this case port number 862). 

server { 
    authentication-mode none; 
    port 862; 
    client-list clietnts1 { 
        address { 
            10.0.0.0/8; 
            172.16.0.0/16; 
        } 
    } 
} 

Figure 2.2: TWAMP Server configuration example 

The TWAMP Client configuration is slightly more complex, as shown in Figure 2.3, as it requires the 
IP address of the Server it wants to talk to be defined, as well as the intervals between the 
measurements, number of measurements, number of probe packets and so on. The measurement 
results can be obtained by reading the output of the CLI commands and/or the appropriate SNMP 
variables, or through streaming telemetry as described in Section 2.1.2.2. 

client { 
    control-connection c23 { 
        destination-interface si-0/0/0.20; 
        history-size 500; 
        routing-instance NetMon-ALL; 
        target-address 10.4.3.1; 
        test-count 4294967290; 
        test-interval 1; 
        traps { 
            control-connection-closed; 
        } 
        test-session t23 { 
            target-address 10.4.3.1; 
            data-fill-with-zeros; 
            probe-count 20; 
            probe-interval 1; 
        } 
    } 
} 

Figure 2.3: TWAMP Client configuration example 

https://www.juniper.net/documentation/en_US/junos/topics/concept/twamp-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-services-twamp-client-probe-results-d110.html
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2.1.2 Data Export 

The results of TWAMP measurements can be transferred from the Juniper routers in two different 
ways to export data to an external collector: 

• By polling appropriate Object Identifiers (OID)s from SNMP Management Information Base 
(MIB) objects (described in the next section) or 

• By pushing data from the network device via the Juniper Streaming Telemetry Interface 
(described in Section 2.1.2.2).  

 SNMP polling 

This section provides a brief explanation of the key data that can be found in the TWAMP MIB, which 
is a proprietary Juniper MIB. The terminology used in the Juniper TWAMP MIB is the following: 

• ‘Probe sample’ – a latency measurement of an individual probe packet, i.e. a packet 
generated by a TWAMP client. 

• ‘Test’: a set of probe packets that belong to one instance of a test-session. Each test session 
starts with a new TCP connection setup between a client and a server. 

• ‘Set’ is used to refer to some probe packets/samples of the test or a sequence of tests. The 
MIB defines 4 types of sets in the variable JnxTwampClientCollectionType 
(=jnxTwampResSumCollection): 
○ currentTest          (12) – the test currently being executed, which likely consists of less 

than probe-count probes, e.g. less than 55 in the given example 
○ lastCompletedTest (2) – the most recently completed test; if there was no packet loss 

this consists of probe-count probes 
○ movingAverage (3) – the 'n' most recent probes (n is configurable) 
○ allTests           (4) – all the probes (since the entry was last reset). 

The TWAMP MIB consists of 8 tables: 

• 3 tables of current results 
• 3 tables of historical data 
• 2 tables of the configuration parameters of a control-connection and test-session 

Calculated Results Table ‘jnxTwampClientResultsCalculatedTable’ 

This table stores the statistics (such as average, min, max, StdDev) calculated from the set of probe 
packets for all 4 types of sets defined by the jnxTwampResSumCollection index of the table entry. 
The most useful of these seems to be lastCompletedTest (2) set, as it represents statistics from the 
full set of probe packets of the latest completed test (hence out of all 55 packets of the example 
config). 

 
2 The type of this MIB object is integer. The numbers given in these lines are the values that can be obtained 
from the device, and each line contains the name and the description of the object. 

https://www.google.com/url?q=https://apps.juniper.net/mib-explorer/getMibContent.html?q%3Djunos-os/20.3R1/mib-jnx-rpm-twamp.txt&sa=D&ust=1603797823182000&usg=AOvVaw32HTmjfmpgMpebOXfrA6Qf
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The Calculated Results entry consists of the following statistics: 

• jnxTwampResCalcSamples (2) – The number of samples used in these calculations 
• jnxTwampResCalcMin        (3) – The minimum of all the samples in the set (in 

microseconds as all the other times) 
• jnxTwampResCalcMax        (4) – The maximum of all the samples in the set 
• jnxTwampResCalcAverage    (5) – The average of all the samples in the set 
• jnxTwampResCalcPkToPk     (6) – The difference between the minimum and maximum of 

all the samples in the set 
• jnxTwampResCalcStdDev     (7) – The standard deviation of all the samples 
• jnxTwampResCalcSum        (8) – The sum of all the samples 

There are 4 indexes that define what a table entry statistic represents: 

• pingCtlOwnerIndex 
• pingCtlTestName 
• jnxTwampResSumCollection (=JnxTwampClientCollectionType) 
• inxTwampResCalcSet (= JnxRpmMeasurementSet) 

The first two indexes are text strings that define the test owner and test name (i.e. c23 is a test 
owner and t23 is a test name in the TWAMP client configuration example in Figure 2.3). The 3rd 
index jnxTwampResSumCollection has already been described above.  

The 4th index defines the metrics the above statistics belong to, i.e.: 

• roundTripTime     (1) – the set of round-trip delays 
• posRttJitter       (2) – positive round-trip jitter measurements 
• negRttJitter       (3) – negative round-trip jitter measurements 
• egress             (4) – outgoing (source-to-destination) one-way delays 
• posEgressJitter    (5) – positive egress jitter measurements 
• negEgressJitter    (6) – negative egress jitter measurements 
• ingress            (7) – incoming (destination-to-source) one-way delays 
• posIngressJitter   (8) – positive ingress jitter measurements 
• negIngressJitter   (9) – negative ingress jitter measurements 

In other words, for each metric a TWAMP agent calculates all 6 statistics, e.g. for roundTripTime it 
calculates Min, Max, Average, PkToPk, StdDev, and Sum.  

The metrics set consists of two groups: delay metrics (roundTripTime, egress, ingress) and jitter 
metrics (posRttJitter, negRTTJitter, posEgressJitter, negEgressJitter, posIngressJitter, 
negIngressJitter). Delay metrics are measured according to the RFC 7679 definition, i.e. as time 
passed since the moment when the first bit of a packet was sent by Src and the moment when the 
last bit of the packet was received by Dst. Jitter metrics are measured according to the RFC 3393, i.e. 
as the difference between the current and the previous round-trip or one-way delays.  

https://tools.ietf.org/html/rfc7679
https://tools.ietf.org/html/rfc3393
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Positive and negative jitter statistics are calculated separately to avoid their mutual compensation. It 
seems both Jitter group of metrics and their statistics, and Min, Max, and StdDev statistics of the 
delay metrics are useful towards the evaluation of packet transmission timing  The measurements 
carried out by the Incubator activity showed that the graphs of these two groups of statistics could 
be very close, with the difference between them no greater than 1-1.5 ms. 

An example of the Calculated Table entry obtained by polling the TWAMP MIB is given in Figure 2.4: 

 

Figure 2.4: Calculated Table entry format 

The Calculated Table does not have an object showing the Date/Time of the set measurement. This 
value can be obtained from the Summary Results Table. 

The Summary Results Table ‘jnxRpmResultsSummaryTable’ stores such entries as the number of 
Sent, Received and Lost packets of the set, for which data are calculated and stored in the Calculated 
Results Table. 

The table entry has four objects: 

• jnxRpmResSumSent                    
• jnxRpmResSumReceived                 
• jnxRpmResSumPercentLost             
• jnxRpmResSumDate. 

The last of these represents the Date/Time of the set measurements. 

The Summary Results table has three indexes, corresponding to the first three indexes of the 
Calculated Results Table. 

 Streaming Telemetry 

The Junos Telemetry Interface (JTI) supports two ways of providing streaming data from Juniper 
network devices: 

1. Native sensors: these are line-card or PFE (Packet Forwarding Engine)-based sensors, which 
export the data via User Datagram Protocol (UDP). These sensors use Juniper's proprietary 
but open data model, using Google Protocol Buffers (GBP) to structure and serialise the 

https://developers.google.com/protocol-buffers
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telemetry data for transmission. Each Native sensor has an associated Protocol Buffer file (or 
“.proto” file) which defines the content and structure of that sensor’s telemetry payload. 

2. gRPC sensors: these are Routing Engine (RE)-based sensors, which export the data using 
gRPC over HTTP2. These sensors use a data model defined by OpenConfig, and structure the 
telemetry data using a key/value pair format. Similar to Native sensors, gRPC sensors also 
employ Google Protocol Buffers. 

A summary of the differences between these two sensor types is shown in Figure 2.5. When 
comparing these two telemetry formats, it can be seen that they both serialise the data in binary 
format using Google Protocol Buffers for transmission over the wire, but they differ in how the 
underlying telemetry data is encoded. For gRPC sensors, the underlying data is structured in a 
key/value pair format. This means that once the binary data off the wire is decoded (using Protobuf 
Compiler, or “protoc”), the underlying data is “self-describing” and the content can immediately be 
discerned as a listing of keys and associated values. Conversely, with Native sensors, once the binary 
data off the wire is decoded, the underlying data is still structured as Google Protocol Buffer 
messages and the associated .proto files must be used as a “secret decoder ring” in order to make 
sense of the underlying data. The more recent trend is towards the open gRPC format, so it is 
expected that implementations will migrate towards the open gRPC approach.   

 
Figure 2.5: Native vs. gRPC telemetry 

 Router Configuration 

This section describes the information on configuring gRPC Sensors on Juniper devices (in the case 
described in this document, vMXes with junOS version 19.3). The focus is given specifically to gRPC 
(gNMI) since Native Sensors did not provide TWAMP related metrics which are the target of this use 
case. 

https://grpc.io/
https://www.openconfig.net/
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Before proceeding with router configuration details, the following prerequisites should be met: 

• The Juniper Networks device that will be used should have Junos OS Release 16.1R3 version 
or later. 

• If the Juniper device is running a version of Junos OS with an upgraded FreeBSD kernel, the 
Junos Network Agent software package should be installed (already included in 19.3 on vMX). 

• OpenConfig for Junos module should also be installed (also included in 19.3 on vMX). 

In order to configure gRPC services in Juniper devices, the following steps should be followed: 

1. A self-signed certificate is required which can be created in a Linux-based machine using the 
following command: 
openssl req -x509 -sha256 -nodes -newkey rsa:2048 -keyout cert.pem -out 
cert.pem 

2. The self-signed certificate needs to be transferred to the employed device e.g.: file copy 
scp://172.16.0.252//home/gts/streaming_telemetry/vMX2/cert.pem /var/tmp/  
where 172.16.0.252 is the IP address of the system with the certificate 

3. The certificate needs to be loaded to the Juniper device: 
 set security certificates local jti-cert load-key-file cert.pem 

4. gRPC can also be configured without SSL and as a consequence without using a certificate, 
however in tests on vMX 19.3 the router did not allow proceeding with the gRPC configuration 
without using SSL 

5. After loading the certificate the following command was used to define that SSL will be used, 
and the port that listens for subscribers is port 32767: 
set system services extension-service request-response grpc ssl port 
32767 

6. Optionally the following command can be used to allow only a subnet to retrieve data from the 
device via gRPC: 
set system services extension-service notification allow-clients address 
172.16.0.0/24 

A configuration file based on the aforementioned commands is given in Figure 2.6. 

system { 
    services { 
        ssh; 
        telnet; 
        extension-service { 
            request-response { 
                grpc { 
                    ssl { 
                        port 32767; 
                        local-certificate vMX1; 
                    } 
                } 
            } 
        } 
    } 

Figure 2.6: gRPC Sensors configuration on Juniper devices 

about:blank
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2.2 Cisco TWAMP and IP SLA 

The TWAMP server/responder feature is available for IOS, IOS XE and IOS XR versions that were 
released in the last couple of years. The instructions given in this section are based on Cisco IOS XE 
16.12 on CSR1000v routers. The configuration may differ from one platform to another and depend 
on the software version. For the most accurate information about the router configuration, the 
reader should refer to the configuration guides for their platform 

On the CSR1000v platform, Cisco supports the TWAMP protocol only in the receiver (server) mode. 
This means that TWAMP measurements cannot be initiated from Cisco routers, and TWAMP 
measurement results are not stored on them. Therefore, Cisco refers to its implementation as 
"TWAMP responder". There are two ways to use TWAMP on current Cisco implementations: 

1. Initiate measurements from other devices (e.g. Linux hosts or Juniper routers), and get the 
measurement results from the initiators (described in the sections 2.2.1 and 2.2.2) or, 

2. Install a virtual service on a Cisco router which is capable of being the TWAMP initiator. An 
example of an Ubuntu machine installed on a Cisco router as a virtual service which runs the 
TWAMP code is given in Section 2.2.3. 

On the other hand, Cisco supports its proprietary IP SLA feature set which allows various 
performance measurements in both directions. The next sections show how to install TWAMP on a 
Cisco router and how to set up some basic UDP jitter monitoring using the IP SLA feature.   

2.2.1 Performance Monitoring Configuration 

 TWAMP Responder Configuration 

TWAMP responder is configured as in the example given in Figure 2.7. The key configuration 
parameter is the port number which in this example is 9000. To get TWAMP results between a Linux 
host and a Cisco router, the following command can be used on the Linux machine: twping 
router_ip_address:9000. 

ip sla responder 
ip sla responder twamp 
 timeout 300 
ip sla server twamp 
 port 9000 
 timer inactivity 300 

Figure 2.7: Cisco TWAMP responder configuration 

2.2.2 Data Export 

A classic, well-known method to get performance measurement results is to retrieve them from the 
Command Line Interface (CLI), or by polling the appropriate SNMP Object Identifier (OID). However, 
in this section, the emerging streaming telemetry approach is presented. 
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 Cisco Model-Driven Telemetry 

Cisco Model-Driven Telemetry (MDT) is a mechanism to stream YANG-modelled data from a router 
to a data collector. There can be several entities in the MDT: 

• Publisher – a network element that streams the data 
• Receiver/collector – a device that receives data 
• Controller – a device that creates subscriptions for some data streams but does not receive 

the data (tells the Publisher to send the data to the Receiver) 
• Subscriber – a device that creates subscriptions for some data streams and is a data receiver. 

Cisco supports two types of subscriptions: 

• Dynamic – subscriptions configured by a Subscriber – "dial-in" subscriptions. Dial-in 
subscriptions are not stored in the Publisher configuration file and must be restarted by the 
Subscriber upon the Publisher reset. 

• Configured – which data to stream, and where to stream them, is configured on the 
Publisher –  "dial-out" subscriptions. Dial-out subscriptions are configured in the Publisher 
CLI and can be stored in the startup configuration. 

Cisco supports NETCONF, RESTCONF and gNMI northbound interfaces to stream data. Table 2.1 
(source: MDT) summarises which transport protocols are being used for different types of 
subscriptions. 

 

Table 2.1: Transport protocols in use for different types of subscriptions 

 Enabling NETCONF 

The key prerequisite for MDT to work is that NETCONF-YANG is enabled. NETCONF-YANG is enabled 
using the following command: 

XE1(config)#netconf-yang 

NETCONF requires authentication of the user who accesses the router. The user must have privilege 
level 15. The router can either use existing users that are defined on a router or a new credential 
must be configured for NETCONF. In addition, it is possible to configure a "candidate datastore" 
feature. The candidate datastore provides a temporary workspace in which a copy of the device's 
running configuration is stored. This feature resolves problems (configuration overwrites) in those 
situations where there are multiple users working simultaneously on a router configuration. 
NETCONF uses default port 830, although this parameter is configurable. 

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/1612/b_1612_programmability_cg/model_driven_telemetry.html
https://tools.ietf.org/html/rfc6020
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/1612/b_1612_programmability_cg/model_driven_telemetry.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/1610/b_1610_programmability_cg/configuring_yang_datamodel.html
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NETCONF status can be verified using the command given in Figure 2.8. 

XE1#show platform software yang-management process  
confd            : Running     
nesd             : Running     
syncfd           : Running     
ncsshd           : Running     
dmiauthd         : Running     
nginx            : Running     
ndbmand          : Running     
pubd             : Running     

Figure 2.8: NETCONF status verification 

ncsshd is a NETCONF SSH daemon, which is running in this example. An additional test could be 
gathering NETCONF device capabilities (supported YANG models) using the command in Figure 2.9. 
As the Cisco CSR1000v platform with IOS XE 16.12 has more than 450 capabilities, a shortened 
example is provided. 

 
H5:~$ ssh -s gts@172.16.0.82 -p 830 netconf 
gts@172.16.0.82's password:  
<?xml version="1.0" encoding="UTF-8"?> 
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> 
<capabilities> 
<capability>urn:ietf:params:netconf:base:1.0</capability> 
<capability>urn:ietf:params:netconf:base:1.1</capability> 
... 
<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-ip-sla-oper?module=Cisco-IOS-
XE-ip-sla-oper&revision=2019-05-01</capability> 
... 
<capability>urn:ietf:params:xml:ns:netconf:base:1.0?module=ietf-
netconf&revision=2011-06-01</capability> 
<capability>urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults?module=ietf-
netconf-with-defaults&revision=2011-06-01</capability> 
<capability> 
        urn:ietf:params:netconf:capability:notification:1.1 
      </capability> 
</capabilities> 
<session-id>442</session-id></hello>]]>]]> 

Figure 2.9: Gathering available NETCONF capabilities from a Cisco device 

 Configuring Dial-Out Data Streaming 

The last step is to configure the push of the data stream from the router towards the data collector. 
This configuration is shown in Figure 2.10, and the key parameters are: 

• xpath of the variables that are streamed 
• The address of the router from which the data is streamed (source-address). 
• The rate of variable stream (update policy) in ms. The update policy can also be configured 

to be set to "update-policy on-change", in which case the data is streamed only if the 
parameters change 

• The IP address, port number and protocol of the data store (receiver). 
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telemetry ietf subscription 98 
 encoding encode-kvgpb 
 filter xpath /ip-sla-ios-xe-oper:ip-sla-stats 
 source-address 172.16.0.82 
 stream yang-push 
 update-policy periodic 5000 
 receiver ip address 172.16.0.252 57000 protocol grpc-tcp 

Figure 2.10: Telemetry subscription configuration 

The given router configuration process is relatively straightforward and well described in Cisco's 
configuration guides. What is not so obvious at first is how to locate the correct xpath for the 
variables to stream to the data collector. One method for doing this is described in Appendix A. 

2.2.3 Cisco Virtual Services 

Cisco IOS XE supports hosting network services and applications within network devices such as 
ISR4000, ASR1000 or CSR1000 routers. Third-party Kernel-based Virtual Machine (KVM) applications 
can easily be hosted directly on such networking devices. The application runs in the virtual services 
container of the operating system of a device. It is delivered as an Open Virtual Application (OVA), 
which is an especially prepared tar file with an .ova extension. The OVA package is installed and 
enabled on a device through the device CLI. This architecture is shown in Figure 2.11. The control 
plane is entirely Linux running on an x86 CPU from Intel. Since the control plane of most routers is 
not completely used, this opens up the possibility for hosting KVMs directly on spare CPU cycles.  

 

Figure 2.11: Cisco virtual service architecture3 

Since the virtual services are not hosted on the data plane, there is no impact on performance in 
terms of router packet forwarding. Control plane functions that handle routing and other device-
related control functions run at a higher priority than hosted virtual machines. However, any time 
the router does not need all the resources reserved for control plane functions, the excess CPU and 
memory resources can be used for virtual services.  

 
3 Image taken from: https://blogs.cisco.com/networking/kvm-app-hosting-on-a-cisco-router  

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/sdn/configuration/b_openflow_agent_nxos/b_openflow_agent_nxos_chapter_010.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/sdn/configuration/b_openflow_agent_nxos/b_openflow_agent_nxos_chapter_010.html
https://blogs.cisco.com/networking/kvm-app-hosting-on-a-cisco-router
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With this feature it is possible to install a Linux virtual machine on top of a Cisco router. This virtual 
machine can be equipped with the appropriate monitoring software (e.g. perfSONAR Tools bundle) 
and used to initiate twamp measurements.  

The key steps in the virtual service installation and configuration are: 

• Preparing the OVA image 
• Virtual service installation and configuration 
• Monitoring agent installation and configuration 

Information on preparing the appropriate virtual service image is given in Appendix B, while the 
other two activities are described below. 

This section presents an example of the installation, configuration and usage of an Ubuntu 18.04.5 
LTS virtual machine installed as a virtual service on top of a Cisco router. Only the most relevant part 
of the configuration is described here; the routing protocols, SNMP and other feature configurations 
are omitted. The logical connection of the Ubuntu VM is given in Figure 2.12. On the CSR1000v, the 
VM is connected to the VirtualPortGroup0. It is possible to have various configurations with a fixed 
IP address or the IP address of another interface (e.g. an unnumbered interface). In the example 
given, a fixed IP address – 10.2.200.1/24 – is used on the VirtualPortGroup0 interface and the 
address of the VM connected to that interface is 10.2.200.2/24. Since the testbed as well as the VM 
are in the IPv4 private address range, NAT was configured between the VPG0 and Gi1 interfaces, and 
not towards Gi2. 

 

 

Figure 2.12: Ubuntu virtual service on Cisco router – configuration 

The part of the configuration below shows its key elements: NAT between the VPG0 and Gi1 
interfaces and the commands to run the virtual service. The name of the virtual service in this case is 
UBUNTU and the system will recognise it under that name. 

Service VM configuration 

interface VirtualPortGroup0  
 ip address 10.2.200.1 255.255.255.0  

https://docs.perfsonar.net/install_debian.html
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 ip nat inside  
 ip router isis   
!  
interface GigabitEthernet1  
 description MANAGEMENT  
 ip dhcp client client-id ascii 9LDTNFMDSOS  
 ip address dhcp  
 ip nat outside   
! 
virtual-service 
 signing level unsigned  
!  
virtual-service UBUNTU  
 vnic gateway VirtualPortGroup0    
!  
ip nat inside source route-map NAT_TO_Internet interface 
GigabitEthernet1 overload  
! 
ip access-list standard 1  
 10 permit 10.2.200.0 0.0.0.255  
!  
route-map NAT_TO_Internet permit 10   
 match ip address 1  
 match interface GigabitEthernet1  
! 

After the configuration is entered, the service VM can be installed with the following command, 
assuming the name of the OVA file is bionic-server.ova: 

virtual-service install name UBUNTU package bootflash:bionic-server.ova 

It is then necessary to wait for the virtual service to be installed. The status should be "Installed": 

show virtual-service list 
Virtual Service List: 
  
Name                    Status             Package Name 
------------------------------------------------------------------------------ 
UBUNTU                  Installed          bionic-server.ova 

Then activate the virtual machine by configuring the following: 

XE1(config)#virtual-service UBUNTU 
XE1(config-virt-serv)#activate 

The status should be: 

show virtual-service list 
Virtual Service List: 
  
Name                    Status             Package Name 
------------------------------------------------------------------------------ 
UBUNTU                  Activated          bionic-server.ova 
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Finally, connect to the machine using the following command: 

virtual-service connect name UBUNTU console 

The CLI interface of the Ubuntu machine should then appear. The exit sequence is ^C ^C ^C. The 
next step is to configure the IP address on the ens3 port, and then the machine can be accessed 
from the other devices via SSH. 

After the Ubuntu virtual machine is enabled, it is necessary to configure the interface of the virtual 
machine (in this case ens3), and once this is connected to the Internet, it is possible to update and 
upgrade the software or to install any software tool for that platform. As described in Section 4, the 
network monitoring software suite that was used to run the TWAMP performance tests was the 
perfSONAR-tools bundle. Data export from the virtual service can be organised in the same way as 
for any other Linux machine. 

 

 

 

 

https://docs.perfsonar.net/install_options.html
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3 Streaming Telemetry Data Collection 

Collecting different types of data from various vendors’ equipment in a unified manner poses 
significant challenges. To that end, Telegraf (v1.14.2), a software package for collecting and 
reporting metrics for all kinds of data with a low memory footprint, was used in the setup described 
in Section 4 to extract the generated monitoring data from the network devices and store them 
(backend) in InfluxDB (v1.7.10).  

The subsections below present how Telegraf can be configured to subscribe to Juniper devices (2.1.2) 
and collect data from Cisco devices (2.2.2), leveraging the streaming telemetry capabilities of the 
network devices. gRPC sensors are focused on since gRPC is an open-source framework already 
embraced by a wide range of vendors, open-source projects and operators for network management 
solutions (and is not a vendor-specific format). Specifically for this use case, gRPC sensors can be 
configured to provide TWAMP related data in comparison to Juniper's native sensors that do not 
provide such functionality. 

3.1 Juniper 

  gRPC Sensors 

Telegraf (v1.14.2) supports the collection and storage (via InfluxDB) of Juniper OpenConfig Telemetry 
data. An indicative Telegraf configuration file for Juniper OpenConfig Telemetry data4 is provided in 
Figure 3.1. The main parameters that can be defined are: 

• The network devices that the collector subscribes to (line 4) 
• The appropriate credentials for the subscription (line 9-10) 
• The default frequency to ask for data (this can be also configured per monitored metric e.g. 

line 24) 
• The sensors (monitoring data) that the collector subscribes to with optional identifiers (see 

line 25, twampmeasurements /junos/twamp/client/probe-test-results/) 

 
4 https://github.com/Juniper/telegraf-jti-plugins/tree/master/plugins/inputs/jti_openconfig_telemetry  

https://github.com/influxdata/telegraf
https://www.influxdata.com/
https://github.com/Juniper/telegraf-jti-plugins/tree/master/plugins/inputs/jti_openconfig_telemetry
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# # Read JTI OpenConfig Telemetry from listed sensors 
 [[inputs.jti_openconfig_telemetry]] 
#   ## List of device addresses to collect telemetry from 
   servers = ["vMX1:32767","vMX2:32767","vMX3:32767","vMX4:32767"] 
# 
#   ## Authentication details. Username and password are must if device expects 
#   ## authentication. Client ID must be unique when connecting from multiple 
instances 
#   ## of telegraf to the same device 
   username = "gts" 
   password = "Netmon" 
   client_id = "telegraf" 
# 
#   ## Frequency to get data 
   sample_frequency = "10000ms" 
# 
#   ## Sensors to subscribe for 
#   ## A identifier for each sensor can be provided in path by separating with space 
#   ## Else sensor path will be used as identifier 
#   ## When identifier is used, we can provide a list of space separated sensors. 
#   ## A single subscription will be created with all these sensors and data will 
#   ## be saved to measurement with this identifier name 
  sensors = [ 
   "/interfaces/", 
   "collection /components/ /lldp", 
   "twampmeasurements /junos/twamp/client/probe-test-results/" 
  ] 
# 
#   ## We allow specifying sensor group level reporting rate. To do this, specify the 
#   ## reporting rate in Duration at the beginning of sensor paths / collection 
#   ## name. For entries without reporting rate, we use configured sample frequency 
#   sensors = [ 
#    "1000ms customReporting /interfaces /lldp", 
#    "2000ms collection /components", 
#    "/interfaces", 
#   ] 
# 
#   ## Optional TLS Config 
    enable_tls = true 
    #tls_ca = "/home/gts/streaming_telemetry/ca.pem" 
#   # tls_cert = "/etc/telegraf/cert.pem" 
#   # tls_key = "/etc/telegraf/key.pem" 
#   ## Use TLS but skip chain & host verification 
    insecure_skip_verify = true 
# 
#   ## Delay between retry attempts of failed RPC calls or streams. Defaults to 
1000ms. 
#   ## Failed streams/calls will not be retried if 0 is provided 
   retry_delay = "1000ms" 
# 
#   ## To treat all string values as tags, set this to true 
   str_as_tags = true 

Figure 3.1: Telegraf Configuration 

Takeaways for collecting streaming Juniper Openconfig telemetry data via Telegraf include: 

• The collector can be configured to subscribe to a large list of data sources5 
• Different reporting rates (depicting how frequently the data are pushed to the subscriber) 

can be configured per monitoring metric. 

 
5  https://www.juniper.net/documentation/en_US/junos/topics/reference/general/junos-telemetry-interface-
grpc-sensors.html  

https://www.juniper.net/documentation/en_US/junos/topics/reference/general/junos-telemetry-interface-grpc-sensors.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/general/junos-telemetry-interface-grpc-sensors.html
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• Custom names can be defined for the collected data 

Especially for TWAMP related metrics, the collector can subscribe to the following paths: 

Path Available Data 
/junos/twamp/client/control-connection/ Data for the control connection of TWAMP 

measurements from the client side 
/junos/twamp/server/control-connection/  Data for the control connection of TWAMP 

measurements from the server side 
/junos/twamp/client/probe-test-results/ Data related to the TWAMP measurements e.g. RTT, 

Jitter 

Table 3.1: TWAMP metrics subscription paths 

3.2 Cisco 

As mentioned, Telegraf provides a unified interface to extract and store various data, including 
telemetry data, from Cisco devices. An indicative Telegraf configuration file for Cisco Model-Driven 
Telemetry (MDT) is provided in Figure 3.2. More information about MDT is available at the following 
link. 

# # Cisco model-driven telemetry (MDT) input plugin for IOS XR, IOS XE and NX-OS 
platforms 
 [[inputs.cisco_telemetry_mdt]] 
#  ## Telemetry transport can be "tcp" or "grpc".  TLS is only supported when 
#  ## using the grpc transport. 
  transport = "grpc" 
# 
#  ## Address and port to host telemetry listener 
  service_address = ":57000" 
# 
#  ## Enable TLS; grpc transport only. 
#  # tls_cert = "/etc/telegraf/cert.pem" 
#  # tls_key = "/etc/telegraf/key.pem" 
# 
#  ## Enable TLS client authentication and define allowed CA certificates; grpc 
#  ##  transport only. 
#  # tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"] 
# 
#  ## Define (for certain nested telemetry measurements with embedded tags) which 
fields are tags 
#  # embedded_tags = ["Cisco-IOS-XR-qos-ma-oper:qos/interface-
table/interface/input/service-policy-names/service-policy-instance/statistics/class-
stats/class-name"] 
# 
#  ## Define aliases to map telemetry encoding paths to simple measurement names 
  [inputs.cisco_telemetry_mdt.aliases] 
    ifstats = "ietf-interfaces:interfaces-state/interface/statistics" 

Figure 3.2: Telegraf Configuration 

https://github.com/influxdata/telegraf/tree/master/plugins/inputs/cisco_telemetry_mdt
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4 Interoperability and Experimental Results 

In this section, an example is provided that uses all the technologies and techniques mentioned in 
this document. The experiment described here had the following goals: 

1. To test TWAMP interoperability between different vendors’ devices. 
2. To test per-link network service performance and compare it to similar measurement 

approaches, as employed by dedicated monitoring boxes. 
3. To test the use of streaming telemetry for the collection of monitoring data. 

4.1 Network and Infrastructure 

The network used in the experiment was built on top of the GÉANT GTS infrastructure. The testbed 
had 13 Ubuntu virtual machines: 

• Hosts H1-H10 and Monitor running Ubuntu16.04.6 LTS 
• A UoC machine which is an Ubuntu 18.04.5 LTS virtual service on Cisco CSR1000v 
• Hosts c1 and c2 running Ubuntu 18.04.5 LTS  
• vMX1-vMX6 – 6 Juniper virtual MX (vMX) routers running junOS version 19.3, 2  
• VSI1 and VSI2 – virtual openvswitch switches 
• XE1 and XE2 – 2 Cisco virtual routers (CSR1000v) running Cisco IOS XE Software Version 

16.12.03, 

It also included several redundant links between the devices as depicted in Figure 4.1.  

Resources for the testbed are located in 4 GÉANT PoPs across Europe which allows for a realistic 
evaluation of the obtained latency and jitter results, without the need to simulate network delays. 
Intradomain routing between the vMX and Cisco routers was established using the Intermediate 
System to Intermediate System (ISIS) protocol. 

https://www.geant.org/Services/Connectivity_and_network/GTS
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Figure 4.1: Interoperability testbed on GTS 

All hosts H1-H10 had the perfSONAR-tools bundle installed including twping. The monitor virtual 
machine also included the following software components: 

• Telegraf v1.14.2 
• Grafana v6.7.2 
• InfluxDB v1.7.10 

4.2 Experimental Evaluation 

The path that was tested and used for the experiment was between the H1 and H5 virtual machines 
and went through the Juniper vMX and Cisco XE devices, while at the endpoints H1 and H5 are 
Ubuntu virtual machines. In order to test the per-segment performance parameters, a set of 
measurements between the first hop (H1) and subsequent hops (vMX1, vMX3, XE1, H5) were 
performed. Since latency is an additive parameter, in this way it is possible to notice if there is an 
increase in the latency on some of the segments (e.g., by subtracting the one-way latency between 
the H1-vMX3 and H1-vMX1 pairs it is possible to infer the latency on the vMX1-vMX3 link) which is 
often an indication of congestion. 

Host-to-host sessions rely on twping, part of the perfSONAR toolbox, while router-to-router sessions 
are based on the TWAMP implementation on the Juniper and Cisco network devices. Host-to-router 
tests were performed between the TWAMP software on Ubuntu (perfSONAR tools) and the TWAMP 
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implementations on the Juniper and Cisco routers. The team also tested the use of the perfSONAR 
tools on a virtual machine installed as a virtual service on top of a Cisco router. 

The results of the host-to-host and host-to-router TWAMP measurement were parsed and stored on 
the TWAMP Client, e.g. for H1- vMX1 and H1 - H3 the TWAMP Client is H1. These were then 
available after the TWAMP test was finished. For router-to-router sessions, the results were 
continuously retrieved from the TWAMP Client Router (in these experiments, every 1s), thus 
providing a high granularity of the monitored metrics. 

The experiments performed focused on evaluating the monitoring services supported within 
different network devices on identifying: 

1. Link quality deterioration, and 
2. Rerouting scenarios. 

In order to compare the results of the monitoring features of network elements with the results 
obtained from the measurements between the Linux hosts, the following TWAMP sessions were 
initiated: 

• vMX1 - vMX3 (Juniper TWAMP -> Juniper TWAMP)6 
• vMX2 - vMX1 (Juniper TWAMP -> Juniper TWAMP) 
• vMX3 - vMX4 (Juniper TWAMP -> Juniper TWAMP) 
• vMX4 - vMX2 (Juniper TWAMP -> Juniper TWAMP) 
• vMX3 - XE1 (Juniper TWAMP -> Cisco TWAMP) 
• H1 - H3 (perfSONAR tools TWAMP -> perfSONAR tools TWAMP) 
• H1 - H5 (perfSONAR tools TWAMP -> perfSONAR tools TWAMP) 
• H1 - vMX1 (perfSONAR tools TWAMP -> Juniper TWAMP) 
• H1 - vMX3 (perfSONAR tools TWAMP -> Juniper TWAMP) 
• H1 - XE1 (perfSONAR tools TWAMP -> Cisco TWAMP) 

In addition to those above, the team also successfully tested the following TWAMP sessions: 

• perfSONAR tools TWAMP on Cisco VM -> Cisco TWAMP  
• perfSONAR tools TWAMP on Cisco VM -> perfSONAR tools TWAMP 
• perfSONAR tools TWAMP on Cisco VM -> Juniper TWAMP  

The results of all these measurements initiated between the various combinations of TWAMP clients 
and servers did not show any significant difference in the latency or jitter measurements between 
the devices in the same nodes, regardless of the TWAMP client or server choice. This indicates that 
all the TWAMP components tested are of similar reliability and accuracy. 

 
6 The notation used to describe TWAMP sessions is (TWAMP client -> TWAMP server) 



 Interoperability and Experimental Results 

Zero-Footprint Monitoring  
Document ID: GN4-3-20-2727118 

24 

In order to model a real-life scenario in the European NREN networks, arbitrary delay and jitter were 
introduced at these specific time windows: 

15:00: Arbitrary delays are added using the tc tool on selected interfaces of the VS1 and VS2 devices: 

• VS1 ens10: 20ms, ens6: 40ms 
• VS2 ens6: 40ms, ens10: 60ms 

15:10: Interface ens10 that connects vMX1 to VS1 is brought down and the traffic is redirected via 
vMX1-vMX2-VS2-vMX4-vMX3. 

15:20: The link (ens10 up) is restored and network traffic is rerouted via the path:  vMX1-VS1-vMX3. 

15:30: Delays are returned to their original values. 

15:40: The Jitter is added to the vMX1 interface (vMX1->vMX3). 

15:50: The Jitter is removed from the vMX1 interface. 

Delay Measurements 

 

Figure 4.2: Delay measurements 

As illustrated in Figure 4.2, both TWAMP session measurements from host-to-host and router-to-
router provided the current state of the delay on each monitored path. At 15:10, a sharp increase in 
the delay can be observed, that is identified by both approaches. Considering only the host-to-host 
measurements, a sharp increase in the delay is observed between H1 and H3, which can be 
attributed to either congestion issues or a rerouting case. Observing the router-to-router 
measurements and specifically vMX1-vMX3, a sharp decrease in the delay can be seen that may infer 
that the resulting increase is related to a problematic link that went down and a different path that 
was chosen. At 15:20 the problematic link is restored and both approaches identify the decrease in 

https://man7.org/linux/man-pages/man8/tc-netem.8.html
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the delay between vMX1 and vMX3; this is also the case at 15:30. For the anomalies (sharp 
increases/decreases) in delay and jitter, both approaches can pinpoint the direction (egress/ingress) 
in which the problem/issue occurred. 

Jitter Measurements 

 

Figure 4.3: Jitter measurements 

At 15:40 jitter was introduced in the vMX1 interface on the link between vMX1 and vMX3 (Figure 
4.3). Similarly to what occurred with the delay results, it can be seen that the increased jitter is 
identified by both approaches almost immediately. Notably, both approaches can show in which 
direction the problem occurs. However, the router-to-router approach provides almost real-time 
measurements (the current jitter value is collected each second), while in the host-to-host case, it is 
necessary to wait for all the results to be retrieved by the TWAMP client. This means that for the 
whole duration of a TWAMP test in the host-to-host case there is no information related to the 
network state, so for example microbursts might be missed. 
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Host-to-Router Measurements 

 

Figure 4.4: Host-to-router measurements 

Finally, the host-to-host and router-to-router approaches can be mixed using a host-to-router 
measurement approach. Hosts initiate TWAMP sessions with the router TWAMP servers. As 
observed in Figure 4.4, this approach can also identify all the aforementioned anomalies that were 
introduced for both delay and jitter. 

Another set of experiments between H1 and XE1 was conducted in order to verify whether there 
was any difference in the results obtained when the Cisco TWAMP server is used on XE1 compared 
to the case where a virtual service with a perfSONAR-tools implementation of TWAMP is used on top 
of XE1. No significant differences were observed indicating that both approaches give results of 
similar accuracy. What should be taken into account is the fact that the XE1 router in both cases was 
without any significant network traffic and CPU load. 



  

Zero-Footprint Monitoring  
Document ID: GN4-3-20-2727118 

27 

5 Conclusions 

This document gives an overview of the methods and technologies that could enable network 
operators to build a network of active monitoring probes without adding any additional hardware in 
their PoPs, an approach known as zero-footprint monitoring.  

The reliability and interoperability of the different implementations of the RFC-based TWAMP 
monitoring code have now reached levels that ensure accurate network service performance 
evaluation even in multi-vendor environments. This means there is no longer a need to rely on the 
proprietary performance evaluation systems provided by some vendors. Specifically, the key 
conclusions that can be drawn from the tests presented here are: 

• Router-to-router TWAMP measurement empowered by streaming telemetry provides fine-
grained real-time delay and jitter data. 

• Host-to-host, host-to-router and router-to-router TWAMP sessions are capable of identifying 
delay and jitter fluctuations, also pinpointing problematic directions. 

• TWAMP is interoperable between Cisco, Juniper, Ubuntu hosts (with the TWAMP 
implementation found in the perfSONAR suite) and an Ubuntu virtual service hosted on a 
capable Cisco router (with the same TWAMP implementation). 

• An insight into per-segment latency degradation can be obtained by using the approach 
described in Section 4.2 where the performance parameters are measured between the first 
hop on the path and all successive network hops. 

• Monitoring software installed on an Ubuntu virtual service hosted on a Cisco router provides 
reliable monitoring results. 

In addition, streaming telemetry provides an efficient and now mature method for gathering 
measurement results from devices without the need to poll devices periodically. 
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Appendix A YANG explorer – Looking for the Xpath 

YANG Explorer is a tool developed by Cisco which at the time of writing is still in a beta version, and 
which may never be made fully production-ready, as the latest changes in the code happened in 
early 2019. However, this is still a useful tool to explore the capabilities of a device and to get the 
xpaths of the specific variables that can be streamed towards a Collector (in a similar way one can 
explore OIDs using a MIB browser). Installation is relatively straightforward as explained in the 
instructions given on the GitHub page of the tool. The user interface is similar to the user interface 
of MIB browsers: it contains the set of supported variables, their description and xpaths. Figure A.1 
shows the key sections of the tool: 

• An Explorer on the left-hand side, where YANG Models can be added to test their availability 
and operation and explore their content. 

• Device Settings in the middle where the parameters of the connection towards the router 
can be set up. Also, in the Manage Models tab it is possible to add/compile new YANG 
models to the Explorer section up to all those that the router supports. 

• An Encoding section in the middle where YANG Explorer creates NetConf RPC, Python or YDK, 
or RestConf RPC code for the dial-in requests, and an end Console section where the results 
of the requests are displayed. 

• A Property section on the right-hand side which shows the properties of the selected YANG 
sections or variables (in this case capabilities requested for the router), and their xpath filter. 

 

Figure A.1: YANG Explorer screen 

https://github.com/CiscoDevNet/yang-explorer
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Upon executing (Run button) the RPC message, the router returns the appropriate set of YANG-
NETCONF capabilities. 

Similarly, it is possible to create a dial-in request for any variable or a branch in the YANG model 
trees. Figure A.2 shows the RPC message that requests an interface description on a router. 

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> 
  <get> 
    <filter> 
      <interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"> 
        <interface> 
          <description/> 
        </interface> 
      </interfaces> 
    </filter> 
  </get> 
</rpc> 

Figure A.2:  RPC message that requests an interface description on a router 

Figure A.3 shows the returned response which includes description fields for all active interfaces. 

<rpc-reply message-id="urn:uuid:bd05d6fd-2994-42fd-8cdd-1808f474f129" 
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" 
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"> 
  <data> 
    <interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"> 
      <interface> 
        <description>MANAGEMENT</description> 
      </interface> 
      <interface> 
        <description>H5</description> 
      </interface> 
      <interface> 
        <description>to_XE2</description> 
      </interface> 
    </interfaces> 
  </data> 
</rpc-reply> 

Figure A.3: Description fields of all active interfaces in the response 

YANG explorer can also prepare RestConf requests, such as the one shown in Figure A.4, which asks 
for state data for all interfaces. 

{ 
   "method": "GET", 
   "url": "/restconf/api/running/interfaces-state", 
   "params": { 
      "Content-type": "application/vnd.yang.data+json", 
      "Accept": "application/vnd.yang.data+json, 
application/vnd.yang.errors+json" 
   }, 
   "data": {} 
} 

Figure A.4: RestConf request for the status of all interfaces 

It is also possible to get Python code that can be used to subscribe to the data stream for a specific 
set of variables as shown in Figure A.5. 
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""" 
    Netconf python example by yang-explorer (https://github.com/CiscoDevNet/yang-
explorer) 
  
    Installing python dependencies: 
    > pip install lxml ncclient 
  
    Running script: (save as example.py) 
    > python example.py -a 172.16.0.82 -u USERNAME -p PASSWORD --port 830 
""" 
  
import lxml.etree as ET 
from argparse import ArgumentParser 
from ncclient import manager 
from ncclient.operations import RPCError 
  
payload = """ 
<filter xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> 
  <interfaces-state xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"/> 
</filter> 
""" 
  
if __name__ == '__main__': 
  
    parser = ArgumentParser(description='Usage:') 
  
    # script arguments 
    parser.add_argument('-a', '--host', type=str, required=True, 
                        help="Device IP address or Hostname") 
    parser.add_argument('-u', '--username', type=str, required=True, 
                        help="Device Username (netconf agent username)") 
    parser.add_argument('-p', '--password', type=str, required=True, 
                        help="Device Password (netconf agent password)") 
    parser.add_argument('--port', type=int, default=830, 
                        help="Netconf agent port") 
    args = parser.parse_args() 
  
    # connect to netconf agent 
    with manager.connect(host=args.host, 
                         port=args.port, 
                         username=args.username, 
                         password=args.password, 
                         timeout=90, 
                         hostkey_verify=False, 
                         device_params={'name': 'csr'}) as m: 
  
        # execute netconf operation 
        try: 
            response = m.get(payload).xml 
            data = ET.fromstring(response) 
        except RPCError as e: 
            data = e._raw 
  
        # beautify output 
        print(ET.tostring(data, pretty_print=True)) 

Figure A.5: Python code used to subscribe to the data stream for a specific set of variables 
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Appendix B Preparing an OVA Image for Cisco Virtual 
Service Installation 

Probably the most complex part of the virtual service installation, and certainly the least 
documented, is the preparation of an appropriate virtual service image (OVA file). This Appendix 
provides an example of the Ubuntu v18.04.5 LTS (bionic-server) virtual machine preparation, with 
instructions based on the Ubuntu 18.04 LTS image for another Ubuntu 18.04 LTS computer. 

1. Install KVM. 
sudo apt install qemu-kvm libvirt-bin virtinst bridge-utils cpu-checker 

2. Install the uv-tools package, a project providing easy tools for easy use of Ubuntu cloud images. 
sudo apt install uvtool 

3. Download the desired image (in our case Ubuntu 18.04 - bionic). 
uvt-simplestreams-libvirt sync arch=amd64 
uvt-simplestreams-libvirt --verbose sync --source http://cloud-
images.Ubuntu.com/daily release=bionic arch=amd64 
uvt-simplestreams-libvirt query 

4. Create SSH keys and run the new VM. In this example we are creating one VM with 1024MB 
RAM, one virtual CPU and max 40GB disk. The default user on the machine is Ubuntu, and we 
define the new password cisco. 
ssh-keygen 
uvt-kvm create bionic-server release=bionic arch=amd64 --memory 1024 --cpu 1 --
disk 40 --ssh-public-key-file ~/.ssh/id_rsa.pub --password cisco 

5. Run the machine in VM manager and log in to it, either through the VM manager or via SSH (you 
will need to get the IP address first).  

6. Install the desired software (in our case the perfSONAR Tools bundle) and configure the VM 
console connection which is required for the connection from the router to the virtual service. 
For console connection, create (as the superuser) the file /etc/init/ttys0: 
# ttyS0 - getty  
#  
# This service maintains a getty on ttyS0 from the point the system is  
# started until it is shut down again.  
  
start on stopped rc RUNLEVEL=[12345]  
stop on runlevel [!12345]  
  
respawn  
exec /sbin/getty -L 9600 ttyS0 vt102  

7. Start ttyS0 with sudo start ttys0 and/or reboot the VM. After the reboot, a process like the one 
below should be shown: 

https://docs.perfsonar.net/install_debian.html
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 783 ttyS0    Ss+    0:00 /sbin/agetty -o -p -- \u --keep-baud 115200,38400,9600 
ttyS0 vt220 

8. Shut down the VM. 

9. Create a directory where the Ubuntu image is going to be built (e.g. bionic-server.) 

10. In that directory, convert the qcow file into qcow2 using the command below. In this example 
the image of the previously prepared server was in /var/lib/uvtool/libvirt/images/, but on some 
other systems the folder might differ. 
sudo qemu-img convert -p -c -o compat=0.10 -O qcow2 
/var/lib/uvtool/libvirt/images/bionic-server.qcow ./bionic-server.qcow2 

11. In the same directory, create the package.yaml file: 
manifest-version: 1.0 
  
info: 
  name: Ubuntu 
  description: "KVM Ubuntu 18.04 LTS" 
  version: 1.1 
  
app: 
  # Indicate app type (vm, paas, lxc etc.,) 
  apptype: vm 
  
  resources: 
   cpu: 10 
   memory: 1024000 
   vcpu: 1 
  
   disk: 
    - target-dev: hdc 
      file: bionic-server.qcow2 
  
   interfaces: 
    - target-dev: net1 
  
   serial: 
    - console 
    - aux 
  
  # Specify runtime and startup 
  startup: 
    runtime: kvm 
    boot-dev: hd 

12. In the same directory, create a file version.ver which should match the version in the 
package.yaml file. 
echo 1.0 > version.ver 

13. Download the create_ova.sh file from here to the parent directory and give it exec privileges. 

14. Run the script and wait for the OVA file to be finished: 
./create_ova.sh -mts 200000 -mfs 100000 bionic-server 

Copy the OVA file to the router where you want to install it (e.g. using SCP). 

 
 

https://github.com/shabaz123/ServiceContainers/raw/master/templates.tar
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Glossary 

CLI  Command Line Interface 
CPU  Central Processing Unit 
GBP  Google Protocol Buffers 
IP  Internet Protocol 
ISIS  Intermediate System to Intermediate System 
JTI  Junos Telemetry Interface 
KVM  Kernel-based Virtual Machine 
LTS  Long Term Support 
MDT  Model-Driven Telemetry 
MIB  Management Information Base 
NAT  Network Address Translation 
OID  Object Identifier 
OVA  Open Virtual Application 
OWAMP  One-Way Active Measurement Protocol 
PFE  Packet Forwarding Engine 
QoS  Quality of Service 
RE  Routing Engine 
RPC  Remote Procedure Call 
SLA  Service Level Agreement 
SNMP  Simple Network Management Protocol 
SSH  Secure Shell 
TWAMP  Two Way Active Measurement Protocol 
UDP  User Datagram Protocol 
VM   Virtual Machine 
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