

16-12-2020

Zero-Footprint Monitoring

Grant Agreement No.: 856726
Work Package WP6
Task Item: Task 3
Dissemination Level: PU (Public)
Document ID: GN4-3-20-2727118

Authors:

Pavle Vuletić (University of Belgrade), Marinos Dimolianis (NTUA/GRNET), Victor Olifer (Jisc),
Ivana Golub (PSNC)

© GÉANT Association on behalf of the GN4-3 project.
The research leading to these results has received funding from the European Union’s Horizon 2020 research and
innovation programme under Grant Agreement No. 856726 (GN4-3).

Abstract
Zero-footprint monitoring is monitoring performed without the use of additional dedicated hardware elements. This
document describes a set of new network element features that enable scalable and vendor-independent network service
performance verification. It is written in a cookbook style and describes the use of standard protocols on network elements
and virtual services on top of network elements, as well as the use of streaming telemetry for result transportation
towards result repositories.

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

i

Table of Contents

Executive Summary 1

1 Introduction 2

2 TWAMP Protocol 4
2.1 Juniper TWAMP 5

2.1.1 TWAMP Configuration 5
2.1.2 Data Export 6

2.2 Cisco TWAMP and IP SLA 11
2.2.1 Performance Monitoring Configuration 11
2.2.2 Data Export 11
2.2.3 Cisco Virtual Services 14

3 Streaming Telemetry Data Collection 18
3.1 Juniper 18
3.2 Cisco 20

4 Interoperability and Experimental Results 21
4.1 Network and Infrastructure 21
4.2 Experimental Evaluation 22

5 Conclusions 27

Appendix A YANG explorer – Looking for the Xpath 28

Appendix B Preparing an OVA Image for Cisco Virtual Service Installation 31

Glossary 33

Table of Figures

Figure 2.1: TWAMP architecture 4
Figure 2.2: TWAMP Server configuration example 5
Figure 2.3: TWAMP Client configuration example 5
Figure 2.4: Calculated Table entry format 8
Figure 2.5: Native vs. gRPC telemetry 9

 Contents

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

ii

Figure 2.6: gRPC Sensors configuration on Juniper devices 10
Figure 2.7: Cisco TWAMP responder configuration 11
Figure 2.8:. NETCONF status verification 13
Figure 2.9: Gathering available NETCONF capabilities from a Cisco device 13
Figure 2.10: Telemetry subscription configuration 14
Figure 2.11: Cisco virtual service architecture 14
Figure 2.12: Ubuntu virtual service on Cisco router – configuration 15
Figure 3.1: Telegraf Configuration 19
Figure 3.2: Telegraf Configuration 20
Figure 4.1: Interoperability testbed on GTS 22
Figure 4.2: Delay measurements 24
Figure 4.3: Jitter measurements 25
Figure 4.4: Host-to-router measurements 26
Figure A.1: YANG explorer screen 28
Figure A.2: RPC message that requests an interface description on a router 29
Figure A.3: Description fields of all active interfaces in the response 29
Figure A.4: RestConf request for the status of all interfaces 29
Figure A.5: Python code used to subscribe to the data stream for a specific set of
variables 30

Table of Tables

Table 2.1: Transport protocols in use for different types of subscriptions 12
Table 3.1: TWAMP metrics subscription paths 20

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

1

Executive Summary

For a long time, gathering network service performance parameters in multi-vendor environments
was a challenge, requiring either the use of dedicated hardware probes, which increased the
hardware footprint and the complexity of an organisation’s network deployment, or the use of
proprietary, vendor-specific and non-interoperable features on network elements.

More recently, some standard protocols for network performance evaluation, such as the Two-Way
Active Measurement Protocol (TWAMP), have started to appear as a regular feature in network
elements of different vendors. This, together with the emerging virtualisation trend, has enabled the
use of standard-based protocols for performance evaluation across a range of different devices of
various vendors without the use of additional equipment, in a model known as zero-footprint
monitoring.

This document describes the current state of the art of standard network service performance
monitoring protocols and how they can be configured on different platforms (Juniper, Cisco, Linux)
as well as on virtual services on top of Cisco routers, which are an interesting recent development. It
is written in a cookbook style which allows the reader to quickly test all the proposed monitoring
methods and use them in operational environments.

Besides this standards-based approach to network service performance monitoring, guidelines are
provided for transferring the results of the measurements using the emerging streaming telemetry
approach. As it is expected that streaming telemetry will soon replace the Simple Network
Management Protocol (SNMP) as a method for gathering network monitoring data, this document
also aims to be a useful resource for the early adopters of this technology.

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

2

1 Introduction

Monitoring and performance verification are essential groups of processes in network service
operations. These processes allow providers to verify the health of the products and services they
are offering and the operation of the underlying infrastructure, and to prove the quality of the
services (QoS) delivered to their users. Users might also wish to have insight into the performance of
the services they use, especially in cases where strict QoS requirements apply.

Such service-oriented performance views are increasingly important, especially given that modern
network services are commonly virtualised, with the traffic of multiple users or customers
multiplexed over the same physical links. With this type of service, it is impossible to estimate the
quality of users’ experience or to verify the Service Level Agreement (SLA) by using legacy tools
which only monitor physical links and network element operation. A situation can easily be
envisaged where the physical link operates without any flaw or congestion, while on the other hand
one or multiple users do not get proper service over that link due to a virtual network
misconfiguration or some problem in the network virtualisation software stack. Therefore, new
monitoring methods for performance verification within a network service are required.

Verifying network service performance requires gathering well-known service performance
indicators such as packet latency, latency variation (jitter) and/or packet loss rate between the
service endpoints and comparing them to threshold values, or against historical data. Ten years ago,
network performance monitoring often assumed the use of dedicated monitoring equipment in
network PoPs and data centres. Monitoring probes, databases to hold results, and UI servers would
have to be installed. Monitoring network service performance from each PoP meant the use of a
separate monitoring probe/machine in each of these. Some examples of such architectures include
the discontinued project RIPE TTM or perfSONAR versions developed before the GN4-1 project1.

In recent years there have been several attempts to make the monitoring process more lightweight
and automated, but also to decrease the size of the monitoring agents (e.g., the RIPE ATLAS project
or the “small node” PMP service in the GÉANT and European NREN networks). With the emergence
of virtualisation, it is now also possible to install some of the most popular tools on virtual machines
or even as applications on containers, which may reside on network hardware.

The decrease in monitoring probe size comes at a cost. The use of virtual appliances or lower-end
hardware typically meant that capacity and available bandwidth measurements were of limited
accuracy, especially on high-speed links (above 1Gbps). However, this does not necessarily present a
problem, as bandwidth measurements must saturate a path with traffic in order to provide accurate
capacity measurement results where available. Such measurements are intrusive and disrupt regular
network service. This is why bandwidth measurements are performed rarely – and only before a
service is in production – to test the path, or where there is a need to debug a network performance

1 In recent years perfSONAR deployments on virtual machines or docker containers became common.

https://www.ripe.net/analyse/archived-projects/ttm
https://atlas.ripe.net/
https://www.geant.org/Services/Connectivity_and_network/Pages/perfSONAR.aspx
https://hub.docker.com/u/perfsonar

 Introduction

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

3

problem. On the other hand, gathering metrics such as packet loss, latency and latency variation
continuously does not require high-end dedicated hardware and adds minimal overhead to the
network traffic. Also, these three QoS metrics indirectly provide insights into any potential
congestion in the network and their observed values are most often a direct consequence of
congestion and buffering on some of the links on the path of a packet. Packet loss, latency and
latency variation can reliably be monitored using standard OWAMP and TWAMP protocols, and
small form factor devices.

Although it is possible to monitor all key performance metrics using small-footprint hardware or
even virtual machines, this approach still assumes that additional equipment (a small probe or a
server to host the software or a virtual machine) will have to be installed and maintained in network
PoPs. This increases the complexity of the PoP configuration and the number of potential in-person
interventions which can be a problem in case of remote network PoPs. For network operators, the
easiest solution is to monitor the network and services using the tools available on network
elements.

Until recently, equipment vendors used their proprietary non-interoperable solutions, e.g.
Juniper RPM and Cisco IP SLA. However, in the last couple of years, new features have started to
emerge on the most commonly used equipment, including support for standard interoperable
protocols such as TWAMP and the possibility to install virtual services on network elements with
either an operating system such as Ubuntu or a dedicated monitoring tool such as perfSONAR which
use standard protocols. Using such features can enable detailed per-segment network service
performance monitoring without the use of additional equipment – this is the zero-footprint
monitoring approach.

The purpose of this document is to show capabilities and limits in using zero-footprint performance
monitoring tools on various network elements, to present the results of the interoperability tests
conducted between them and to provide guidelines for typical usage scenarios. This document aims
to provide a valuable source of information and a guideline for NRENs who wish to set up or
redesign their performance monitoring systems. It also includes examples of configurations for the
tools presented; While these tools can be configured manually via a CLI, there are clear benefits to
adopting automation, e.g. in enabling greater efficiency and in providing configuration integrity. A
discussion of the progress made towards Automation and Orchestration of Services in the GÉANT
Community can be found in Deliverable D6.2.

This document is structured as follows: Section 2 introduces basic information about the TWAMP
protocol which is a de-facto standard for performance verification in IP networks. It describes the
TWAMP capabilities of Juniper and Cisco devices, their limitations and configuration methods. The
novel streaming telemetry method for sending measurement results towards result repositories
where they are then available to visualisation tools is described as it applies to both vendors’
equipment. Section 2 also describes how to use virtual services (e.g. Linux VM) on top of Cisco
routers. Section 3 addresses possible data collection on results repositories using the novel
streaming telemetry mechanism. Finally, Section 4 describes the use of TWAMP monitoring and
interoperability in a multi-vendor use-case, set up in the GÉANT GTS environment.

https://tools.ietf.org/html/rfc4656
https://tools.ietf.org/html/rfc5357
https://www.juniper.net/documentation/en_US/junos/topics/concept/security-rpm-overview.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst4500/12-2/44sg/configuration/guide/Wrapper-44SG/swipsla.html
https://tools.ietf.org/html/rfc5357
https://github.com/robertcsapo/cisco-ios-xe-ubuntu
https://github.com/CiscoIOx/perfsonar
https://www.geant.org/Projects/GEANT_Project_GN4-3/GN43_deliverables/D6-2_Automation-and-Orchestration-of-Services-in-the-GEANT-Community.pdf

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

4

2 TWAMP Protocol

The Two-Way Active Measurement Protocol (TWAMP) is an active measurement protocol defined
in RFC5357. It is an extension of the older One-Way Active Measurement Protocol (OWAMP)
specification which is capable of monitoring packet loss, latency and latency variation (jitter)
between two hosts in each direction separately (one-way property). TWAMP adds two-way (round-
trip time) measurements to the OWAMP monitoring portfolio. It establishes a control connection
between the two devices which run a TWAMP client and a TWAMP server (TWAMP endpoints) and
separate test sessions where the probe packets are exchanged. Since OWAMP and TWAMP measure
one-way performance metrics, the endpoints must be time-synchronised with both protocols, which
can be an additional challenge if particularly accurate measurements are desired. Recently, TWAMP
became a common part of the feature sets of the largest network equipment vendors. This enables
performance measurements between the devices of different vendors (interoperability), which was
not previously possible.

Figure 2.1 below shows the key logical entities in TWAMP, including a Server which listens for
measurement requests that come from the Clients (Session Senders). Probe packets are exchanged
in both directions after the Control connection is established and monitoring configured.

Figure 2.1: TWAMP architecture

The TWAMP protocol has recently been implemented by leading router vendors such as Juniper and
Cisco. The Juniper implementation includes both a TWAMP server and a client, which allows
monitoring of network latency in a per-segment way between a pair of Juniper routers, one of which
runs a TWAMP client and the other a TWAMP server. The measurement data are calculated by a
TWAMP client.

So far, Cisco have implemented only the TWAMP server in their routers so an external TWAMP client
is needed to perform latency measurements. One possible solution for measuring delays on a per-
segment basis between Cisco routers could be to use the twping client from the perfSONAR toolkit,
which has TWAMP sessions with all Cisco TWAMP servers on routers along a path. Another possible
solution might be to install a virtual machine on a Cisco router (currently only some models support
it) and then a TWAMP client on the VM (e.g. twping from perfSONAR). Furthermore, Cisco has
introduced Guestshell, a virtualised Linux-based environment that may also be used for running
TWAMP clients.

https://tools.ietf.org/html/rfc5357
https://tools.ietf.org/html/rfc4656
http://docs.perfsonar.net/index.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/166/b_166_programmability_cg/guest_shell.html

 TWAMP Protocol

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

5

2.1 Juniper TWAMP

This section briefly explains the way TWAMP can be configured and used on Juniper devices.
Specifically, it provides information on how to configure TWAMP Juniper devices as TWAMP
servers/clients and further explains how TWAMP measurements can be retrieved. The configuration
may differ from one platform to another and depend on the software version. For the most accurate
information about router configuration, the reader should refer to the configuration guides for their
platform. More details about TWAMP on Juniper devices are available at the following link.

2.1.1 TWAMP Configuration

Figure 2.1 gives an example of the TWAMP server and client configuration on Juniper devices. Server
configuration is simpler as it defines only the port on which the server listens to the requests and the
set of IP addresses from which it expects the TWAMP requests (in this case port number 862).

server {
 authentication-mode none;
 port 862;
 client-list clietnts1 {
 address {
 10.0.0.0/8;
 172.16.0.0/16;
 }
 }
}

Figure 2.2: TWAMP Server configuration example

The TWAMP Client configuration is slightly more complex, as shown in Figure 2.3, as it requires the
IP address of the Server it wants to talk to be defined, as well as the intervals between the
measurements, number of measurements, number of probe packets and so on. The measurement
results can be obtained by reading the output of the CLI commands and/or the appropriate SNMP
variables, or through streaming telemetry as described in Section 2.1.2.2.

client {
 control-connection c23 {
 destination-interface si-0/0/0.20;
 history-size 500;
 routing-instance NetMon-ALL;
 target-address 10.4.3.1;
 test-count 4294967290;
 test-interval 1;
 traps {
 control-connection-closed;
 }
 test-session t23 {
 target-address 10.4.3.1;
 data-fill-with-zeros;
 probe-count 20;
 probe-interval 1;
 }
 }
}

Figure 2.3: TWAMP Client configuration example

https://www.juniper.net/documentation/en_US/junos/topics/concept/twamp-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-services-twamp-client-probe-results-d110.html

 TWAMP Protocol

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

6

2.1.2 Data Export

The results of TWAMP measurements can be transferred from the Juniper routers in two different
ways to export data to an external collector:

• By polling appropriate Object Identifiers (OID)s from SNMP Management Information Base
(MIB) objects (described in the next section) or

• By pushing data from the network device via the Juniper Streaming Telemetry Interface
(described in Section 2.1.2.2).

 SNMP polling

This section provides a brief explanation of the key data that can be found in the TWAMP MIB, which
is a proprietary Juniper MIB. The terminology used in the Juniper TWAMP MIB is the following:

• ‘Probe sample’ – a latency measurement of an individual probe packet, i.e. a packet
generated by a TWAMP client.

• ‘Test’: a set of probe packets that belong to one instance of a test-session. Each test session
starts with a new TCP connection setup between a client and a server.

• ‘Set’ is used to refer to some probe packets/samples of the test or a sequence of tests. The
MIB defines 4 types of sets in the variable JnxTwampClientCollectionType
(=jnxTwampResSumCollection):
○ currentTest (12) – the test currently being executed, which likely consists of less

than probe-count probes, e.g. less than 55 in the given example
○ lastCompletedTest (2) – the most recently completed test; if there was no packet loss

this consists of probe-count probes
○ movingAverage (3) – the 'n' most recent probes (n is configurable)
○ allTests (4) – all the probes (since the entry was last reset).

The TWAMP MIB consists of 8 tables:

• 3 tables of current results
• 3 tables of historical data
• 2 tables of the configuration parameters of a control-connection and test-session

Calculated Results Table ‘jnxTwampClientResultsCalculatedTable’

This table stores the statistics (such as average, min, max, StdDev) calculated from the set of probe
packets for all 4 types of sets defined by the jnxTwampResSumCollection index of the table entry.
The most useful of these seems to be lastCompletedTest (2) set, as it represents statistics from the
full set of probe packets of the latest completed test (hence out of all 55 packets of the example
config).

2 The type of this MIB object is integer. The numbers given in these lines are the values that can be obtained
from the device, and each line contains the name and the description of the object.

https://www.google.com/url?q=https://apps.juniper.net/mib-explorer/getMibContent.html?q%3Djunos-os/20.3R1/mib-jnx-rpm-twamp.txt&sa=D&ust=1603797823182000&usg=AOvVaw32HTmjfmpgMpebOXfrA6Qf

 TWAMP Protocol

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

7

The Calculated Results entry consists of the following statistics:

• jnxTwampResCalcSamples (2) – The number of samples used in these calculations
• jnxTwampResCalcMin (3) – The minimum of all the samples in the set (in

microseconds as all the other times)
• jnxTwampResCalcMax (4) – The maximum of all the samples in the set
• jnxTwampResCalcAverage (5) – The average of all the samples in the set
• jnxTwampResCalcPkToPk (6) – The difference between the minimum and maximum of

all the samples in the set
• jnxTwampResCalcStdDev (7) – The standard deviation of all the samples
• jnxTwampResCalcSum (8) – The sum of all the samples

There are 4 indexes that define what a table entry statistic represents:

• pingCtlOwnerIndex
• pingCtlTestName
• jnxTwampResSumCollection (=JnxTwampClientCollectionType)
• inxTwampResCalcSet (= JnxRpmMeasurementSet)

The first two indexes are text strings that define the test owner and test name (i.e. c23 is a test
owner and t23 is a test name in the TWAMP client configuration example in Figure 2.3). The 3rd
index jnxTwampResSumCollection has already been described above.

The 4th index defines the metrics the above statistics belong to, i.e.:

• roundTripTime (1) – the set of round-trip delays
• posRttJitter (2) – positive round-trip jitter measurements
• negRttJitter (3) – negative round-trip jitter measurements
• egress (4) – outgoing (source-to-destination) one-way delays
• posEgressJitter (5) – positive egress jitter measurements
• negEgressJitter (6) – negative egress jitter measurements
• ingress (7) – incoming (destination-to-source) one-way delays
• posIngressJitter (8) – positive ingress jitter measurements
• negIngressJitter (9) – negative ingress jitter measurements

In other words, for each metric a TWAMP agent calculates all 6 statistics, e.g. for roundTripTime it
calculates Min, Max, Average, PkToPk, StdDev, and Sum.

The metrics set consists of two groups: delay metrics (roundTripTime, egress, ingress) and jitter
metrics (posRttJitter, negRTTJitter, posEgressJitter, negEgressJitter, posIngressJitter,
negIngressJitter). Delay metrics are measured according to the RFC 7679 definition, i.e. as time
passed since the moment when the first bit of a packet was sent by Src and the moment when the
last bit of the packet was received by Dst. Jitter metrics are measured according to the RFC 3393, i.e.
as the difference between the current and the previous round-trip or one-way delays.

https://tools.ietf.org/html/rfc7679
https://tools.ietf.org/html/rfc3393

 TWAMP Protocol

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

8

Positive and negative jitter statistics are calculated separately to avoid their mutual compensation. It
seems both Jitter group of metrics and their statistics, and Min, Max, and StdDev statistics of the
delay metrics are useful towards the evaluation of packet transmission timing The measurements
carried out by the Incubator activity showed that the graphs of these two groups of statistics could
be very close, with the difference between them no greater than 1-1.5 ms.

An example of the Calculated Table entry obtained by polling the TWAMP MIB is given in Figure 2.4:

Figure 2.4: Calculated Table entry format

The Calculated Table does not have an object showing the Date/Time of the set measurement. This
value can be obtained from the Summary Results Table.

The Summary Results Table ‘jnxRpmResultsSummaryTable’ stores such entries as the number of
Sent, Received and Lost packets of the set, for which data are calculated and stored in the Calculated
Results Table.

The table entry has four objects:

• jnxRpmResSumSent
• jnxRpmResSumReceived
• jnxRpmResSumPercentLost
• jnxRpmResSumDate.

The last of these represents the Date/Time of the set measurements.

The Summary Results table has three indexes, corresponding to the first three indexes of the
Calculated Results Table.

 Streaming Telemetry

The Junos Telemetry Interface (JTI) supports two ways of providing streaming data from Juniper
network devices:

1. Native sensors: these are line-card or PFE (Packet Forwarding Engine)-based sensors, which
export the data via User Datagram Protocol (UDP). These sensors use Juniper's proprietary
but open data model, using Google Protocol Buffers (GBP) to structure and serialise the

https://developers.google.com/protocol-buffers

 TWAMP Protocol

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

9

telemetry data for transmission. Each Native sensor has an associated Protocol Buffer file (or
“.proto” file) which defines the content and structure of that sensor’s telemetry payload.

2. gRPC sensors: these are Routing Engine (RE)-based sensors, which export the data using
gRPC over HTTP2. These sensors use a data model defined by OpenConfig, and structure the
telemetry data using a key/value pair format. Similar to Native sensors, gRPC sensors also
employ Google Protocol Buffers.

A summary of the differences between these two sensor types is shown in Figure 2.5. When
comparing these two telemetry formats, it can be seen that they both serialise the data in binary
format using Google Protocol Buffers for transmission over the wire, but they differ in how the
underlying telemetry data is encoded. For gRPC sensors, the underlying data is structured in a
key/value pair format. This means that once the binary data off the wire is decoded (using Protobuf
Compiler, or “protoc”), the underlying data is “self-describing” and the content can immediately be
discerned as a listing of keys and associated values. Conversely, with Native sensors, once the binary
data off the wire is decoded, the underlying data is still structured as Google Protocol Buffer
messages and the associated .proto files must be used as a “secret decoder ring” in order to make
sense of the underlying data. The more recent trend is towards the open gRPC format, so it is
expected that implementations will migrate towards the open gRPC approach.

Figure 2.5: Native vs. gRPC telemetry

 Router Configuration

This section describes the information on configuring gRPC Sensors on Juniper devices (in the case
described in this document, vMXes with junOS version 19.3). The focus is given specifically to gRPC
(gNMI) since Native Sensors did not provide TWAMP related metrics which are the target of this use
case.

https://grpc.io/
https://www.openconfig.net/

 TWAMP Protocol

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

10

Before proceeding with router configuration details, the following prerequisites should be met:

• The Juniper Networks device that will be used should have Junos OS Release 16.1R3 version
or later.

• If the Juniper device is running a version of Junos OS with an upgraded FreeBSD kernel, the
Junos Network Agent software package should be installed (already included in 19.3 on vMX).

• OpenConfig for Junos module should also be installed (also included in 19.3 on vMX).

In order to configure gRPC services in Juniper devices, the following steps should be followed:

1. A self-signed certificate is required which can be created in a Linux-based machine using the
following command:
openssl req -x509 -sha256 -nodes -newkey rsa:2048 -keyout cert.pem -out
cert.pem

2. The self-signed certificate needs to be transferred to the employed device e.g.: file copy
scp://172.16.0.252//home/gts/streaming_telemetry/vMX2/cert.pem /var/tmp/
where 172.16.0.252 is the IP address of the system with the certificate

3. The certificate needs to be loaded to the Juniper device:
 set security certificates local jti-cert load-key-file cert.pem

4. gRPC can also be configured without SSL and as a consequence without using a certificate,
however in tests on vMX 19.3 the router did not allow proceeding with the gRPC configuration
without using SSL

5. After loading the certificate the following command was used to define that SSL will be used,
and the port that listens for subscribers is port 32767:
set system services extension-service request-response grpc ssl port
32767

6. Optionally the following command can be used to allow only a subnet to retrieve data from the
device via gRPC:
set system services extension-service notification allow-clients address
172.16.0.0/24

A configuration file based on the aforementioned commands is given in Figure 2.6.

system {
 services {
 ssh;
 telnet;
 extension-service {
 request-response {
 grpc {
 ssl {
 port 32767;
 local-certificate vMX1;
 }
 }
 }
 }
 }

Figure 2.6: gRPC Sensors configuration on Juniper devices

about:blank

 TWAMP Protocol

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

11

2.2 Cisco TWAMP and IP SLA

The TWAMP server/responder feature is available for IOS, IOS XE and IOS XR versions that were
released in the last couple of years. The instructions given in this section are based on Cisco IOS XE
16.12 on CSR1000v routers. The configuration may differ from one platform to another and depend
on the software version. For the most accurate information about the router configuration, the
reader should refer to the configuration guides for their platform

On the CSR1000v platform, Cisco supports the TWAMP protocol only in the receiver (server) mode.
This means that TWAMP measurements cannot be initiated from Cisco routers, and TWAMP
measurement results are not stored on them. Therefore, Cisco refers to its implementation as
"TWAMP responder". There are two ways to use TWAMP on current Cisco implementations:

1. Initiate measurements from other devices (e.g. Linux hosts or Juniper routers), and get the
measurement results from the initiators (described in the sections 2.2.1 and 2.2.2) or,

2. Install a virtual service on a Cisco router which is capable of being the TWAMP initiator. An
example of an Ubuntu machine installed on a Cisco router as a virtual service which runs the
TWAMP code is given in Section 2.2.3.

On the other hand, Cisco supports its proprietary IP SLA feature set which allows various
performance measurements in both directions. The next sections show how to install TWAMP on a
Cisco router and how to set up some basic UDP jitter monitoring using the IP SLA feature.

2.2.1 Performance Monitoring Configuration

 TWAMP Responder Configuration

TWAMP responder is configured as in the example given in Figure 2.7. The key configuration
parameter is the port number which in this example is 9000. To get TWAMP results between a Linux
host and a Cisco router, the following command can be used on the Linux machine: twping
router_ip_address:9000.

ip sla responder
ip sla responder twamp
 timeout 300
ip sla server twamp
 port 9000
 timer inactivity 300

Figure 2.7: Cisco TWAMP responder configuration

2.2.2 Data Export

A classic, well-known method to get performance measurement results is to retrieve them from the
Command Line Interface (CLI), or by polling the appropriate SNMP Object Identifier (OID). However,
in this section, the emerging streaming telemetry approach is presented.

 TWAMP Protocol

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

12

 Cisco Model-Driven Telemetry

Cisco Model-Driven Telemetry (MDT) is a mechanism to stream YANG-modelled data from a router
to a data collector. There can be several entities in the MDT:

• Publisher – a network element that streams the data
• Receiver/collector – a device that receives data
• Controller – a device that creates subscriptions for some data streams but does not receive

the data (tells the Publisher to send the data to the Receiver)
• Subscriber – a device that creates subscriptions for some data streams and is a data receiver.

Cisco supports two types of subscriptions:

• Dynamic – subscriptions configured by a Subscriber – "dial-in" subscriptions. Dial-in
subscriptions are not stored in the Publisher configuration file and must be restarted by the
Subscriber upon the Publisher reset.

• Configured – which data to stream, and where to stream them, is configured on the
Publisher – "dial-out" subscriptions. Dial-out subscriptions are configured in the Publisher
CLI and can be stored in the startup configuration.

Cisco supports NETCONF, RESTCONF and gNMI northbound interfaces to stream data. Table 2.1
(source: MDT) summarises which transport protocols are being used for different types of
subscriptions.

Table 2.1: Transport protocols in use for different types of subscriptions

 Enabling NETCONF

The key prerequisite for MDT to work is that NETCONF-YANG is enabled. NETCONF-YANG is enabled
using the following command:

XE1(config)#netconf-yang

NETCONF requires authentication of the user who accesses the router. The user must have privilege
level 15. The router can either use existing users that are defined on a router or a new credential
must be configured for NETCONF. In addition, it is possible to configure a "candidate datastore"
feature. The candidate datastore provides a temporary workspace in which a copy of the device's
running configuration is stored. This feature resolves problems (configuration overwrites) in those
situations where there are multiple users working simultaneously on a router configuration.
NETCONF uses default port 830, although this parameter is configurable.

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/1612/b_1612_programmability_cg/model_driven_telemetry.html
https://tools.ietf.org/html/rfc6020
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/1612/b_1612_programmability_cg/model_driven_telemetry.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/prog/configuration/1610/b_1610_programmability_cg/configuring_yang_datamodel.html

 TWAMP Protocol

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

13

NETCONF status can be verified using the command given in Figure 2.8.

XE1#show platform software yang-management process
confd : Running
nesd : Running
syncfd : Running
ncsshd : Running
dmiauthd : Running
nginx : Running
ndbmand : Running
pubd : Running

Figure 2.8: NETCONF status verification

ncsshd is a NETCONF SSH daemon, which is running in this example. An additional test could be
gathering NETCONF device capabilities (supported YANG models) using the command in Figure 2.9.
As the Cisco CSR1000v platform with IOS XE 16.12 has more than 450 capabilities, a shortened
example is provided.

H5:~$ ssh -s gts@172.16.0.82 -p 830 netconf
gts@172.16.0.82's password:
<?xml version="1.0" encoding="UTF-8"?>
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.0</capability>
<capability>urn:ietf:params:netconf:base:1.1</capability>
...
<capability>http://cisco.com/ns/yang/Cisco-IOS-XE-ip-sla-oper?module=Cisco-IOS-
XE-ip-sla-oper&revision=2019-05-01</capability>
...
<capability>urn:ietf:params:xml:ns:netconf:base:1.0?module=ietf-
netconf&revision=2011-06-01</capability>
<capability>urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults?module=ietf-
netconf-with-defaults&revision=2011-06-01</capability>
<capability>
 urn:ietf:params:netconf:capability:notification:1.1
 </capability>
</capabilities>
<session-id>442</session-id></hello>]]>]]>

Figure 2.9: Gathering available NETCONF capabilities from a Cisco device

 Configuring Dial-Out Data Streaming

The last step is to configure the push of the data stream from the router towards the data collector.
This configuration is shown in Figure 2.10, and the key parameters are:

• xpath of the variables that are streamed
• The address of the router from which the data is streamed (source-address).
• The rate of variable stream (update policy) in ms. The update policy can also be configured

to be set to "update-policy on-change", in which case the data is streamed only if the
parameters change

• The IP address, port number and protocol of the data store (receiver).

 TWAMP Protocol

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

14

telemetry ietf subscription 98
 encoding encode-kvgpb
 filter xpath /ip-sla-ios-xe-oper:ip-sla-stats
 source-address 172.16.0.82
 stream yang-push
 update-policy periodic 5000
 receiver ip address 172.16.0.252 57000 protocol grpc-tcp

Figure 2.10: Telemetry subscription configuration

The given router configuration process is relatively straightforward and well described in Cisco's
configuration guides. What is not so obvious at first is how to locate the correct xpath for the
variables to stream to the data collector. One method for doing this is described in Appendix A.

2.2.3 Cisco Virtual Services

Cisco IOS XE supports hosting network services and applications within network devices such as
ISR4000, ASR1000 or CSR1000 routers. Third-party Kernel-based Virtual Machine (KVM) applications
can easily be hosted directly on such networking devices. The application runs in the virtual services
container of the operating system of a device. It is delivered as an Open Virtual Application (OVA),
which is an especially prepared tar file with an .ova extension. The OVA package is installed and
enabled on a device through the device CLI. This architecture is shown in Figure 2.11. The control
plane is entirely Linux running on an x86 CPU from Intel. Since the control plane of most routers is
not completely used, this opens up the possibility for hosting KVMs directly on spare CPU cycles.

Figure 2.11: Cisco virtual service architecture3

Since the virtual services are not hosted on the data plane, there is no impact on performance in
terms of router packet forwarding. Control plane functions that handle routing and other device-
related control functions run at a higher priority than hosted virtual machines. However, any time
the router does not need all the resources reserved for control plane functions, the excess CPU and
memory resources can be used for virtual services.

3 Image taken from: https://blogs.cisco.com/networking/kvm-app-hosting-on-a-cisco-router

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/sdn/configuration/b_openflow_agent_nxos/b_openflow_agent_nxos_chapter_010.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/sdn/configuration/b_openflow_agent_nxos/b_openflow_agent_nxos_chapter_010.html
https://blogs.cisco.com/networking/kvm-app-hosting-on-a-cisco-router

 TWAMP Protocol

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

15

With this feature it is possible to install a Linux virtual machine on top of a Cisco router. This virtual
machine can be equipped with the appropriate monitoring software (e.g. perfSONAR Tools bundle)
and used to initiate twamp measurements.

The key steps in the virtual service installation and configuration are:

• Preparing the OVA image
• Virtual service installation and configuration
• Monitoring agent installation and configuration

Information on preparing the appropriate virtual service image is given in Appendix B, while the
other two activities are described below.

This section presents an example of the installation, configuration and usage of an Ubuntu 18.04.5
LTS virtual machine installed as a virtual service on top of a Cisco router. Only the most relevant part
of the configuration is described here; the routing protocols, SNMP and other feature configurations
are omitted. The logical connection of the Ubuntu VM is given in Figure 2.12. On the CSR1000v, the
VM is connected to the VirtualPortGroup0. It is possible to have various configurations with a fixed
IP address or the IP address of another interface (e.g. an unnumbered interface). In the example
given, a fixed IP address – 10.2.200.1/24 – is used on the VirtualPortGroup0 interface and the
address of the VM connected to that interface is 10.2.200.2/24. Since the testbed as well as the VM
are in the IPv4 private address range, NAT was configured between the VPG0 and Gi1 interfaces, and
not towards Gi2.

Figure 2.12: Ubuntu virtual service on Cisco router – configuration

The part of the configuration below shows its key elements: NAT between the VPG0 and Gi1
interfaces and the commands to run the virtual service. The name of the virtual service in this case is
UBUNTU and the system will recognise it under that name.

Service VM configuration

interface VirtualPortGroup0
 ip address 10.2.200.1 255.255.255.0

https://docs.perfsonar.net/install_debian.html

 TWAMP Protocol

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

16

 ip nat inside
 ip router isis
!
interface GigabitEthernet1
 description MANAGEMENT
 ip dhcp client client-id ascii 9LDTNFMDSOS
 ip address dhcp
 ip nat outside
!
virtual-service
 signing level unsigned
!
virtual-service UBUNTU
 vnic gateway VirtualPortGroup0
!
ip nat inside source route-map NAT_TO_Internet interface
GigabitEthernet1 overload
!
ip access-list standard 1
 10 permit 10.2.200.0 0.0.0.255
!
route-map NAT_TO_Internet permit 10
 match ip address 1
 match interface GigabitEthernet1
!

After the configuration is entered, the service VM can be installed with the following command,
assuming the name of the OVA file is bionic-server.ova:

virtual-service install name UBUNTU package bootflash:bionic-server.ova

It is then necessary to wait for the virtual service to be installed. The status should be "Installed":

show virtual-service list
Virtual Service List:

Name Status Package Name
--
UBUNTU Installed bionic-server.ova

Then activate the virtual machine by configuring the following:

XE1(config)#virtual-service UBUNTU
XE1(config-virt-serv)#activate

The status should be:

show virtual-service list
Virtual Service List:

Name Status Package Name
--
UBUNTU Activated bionic-server.ova

 TWAMP Protocol

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

17

Finally, connect to the machine using the following command:

virtual-service connect name UBUNTU console

The CLI interface of the Ubuntu machine should then appear. The exit sequence is ^C ^C ^C. The
next step is to configure the IP address on the ens3 port, and then the machine can be accessed
from the other devices via SSH.

After the Ubuntu virtual machine is enabled, it is necessary to configure the interface of the virtual
machine (in this case ens3), and once this is connected to the Internet, it is possible to update and
upgrade the software or to install any software tool for that platform. As described in Section 4, the
network monitoring software suite that was used to run the TWAMP performance tests was the
perfSONAR-tools bundle. Data export from the virtual service can be organised in the same way as
for any other Linux machine.

https://docs.perfsonar.net/install_options.html

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

18

3 Streaming Telemetry Data Collection

Collecting different types of data from various vendors’ equipment in a unified manner poses
significant challenges. To that end, Telegraf (v1.14.2), a software package for collecting and
reporting metrics for all kinds of data with a low memory footprint, was used in the setup described
in Section 4 to extract the generated monitoring data from the network devices and store them
(backend) in InfluxDB (v1.7.10).

The subsections below present how Telegraf can be configured to subscribe to Juniper devices (2.1.2)
and collect data from Cisco devices (2.2.2), leveraging the streaming telemetry capabilities of the
network devices. gRPC sensors are focused on since gRPC is an open-source framework already
embraced by a wide range of vendors, open-source projects and operators for network management
solutions (and is not a vendor-specific format). Specifically for this use case, gRPC sensors can be
configured to provide TWAMP related data in comparison to Juniper's native sensors that do not
provide such functionality.

3.1 Juniper

 gRPC Sensors

Telegraf (v1.14.2) supports the collection and storage (via InfluxDB) of Juniper OpenConfig Telemetry
data. An indicative Telegraf configuration file for Juniper OpenConfig Telemetry data4 is provided in
Figure 3.1. The main parameters that can be defined are:

• The network devices that the collector subscribes to (line 4)
• The appropriate credentials for the subscription (line 9-10)
• The default frequency to ask for data (this can be also configured per monitored metric e.g.

line 24)
• The sensors (monitoring data) that the collector subscribes to with optional identifiers (see

line 25, twampmeasurements /junos/twamp/client/probe-test-results/)

4 https://github.com/Juniper/telegraf-jti-plugins/tree/master/plugins/inputs/jti_openconfig_telemetry

https://github.com/influxdata/telegraf
https://www.influxdata.com/
https://github.com/Juniper/telegraf-jti-plugins/tree/master/plugins/inputs/jti_openconfig_telemetry

 Streaming Telemetry Data Collection

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

19

Read JTI OpenConfig Telemetry from listed sensors
 [[inputs.jti_openconfig_telemetry]]
List of device addresses to collect telemetry from
 servers = ["vMX1:32767","vMX2:32767","vMX3:32767","vMX4:32767"]

Authentication details. Username and password are must if device expects
authentication. Client ID must be unique when connecting from multiple
instances
of telegraf to the same device
 username = "gts"
 password = "Netmon"
 client_id = "telegraf"

Frequency to get data
 sample_frequency = "10000ms"

Sensors to subscribe for
A identifier for each sensor can be provided in path by separating with space
Else sensor path will be used as identifier
When identifier is used, we can provide a list of space separated sensors.
A single subscription will be created with all these sensors and data will
be saved to measurement with this identifier name
 sensors = [
 "/interfaces/",
 "collection /components/ /lldp",
 "twampmeasurements /junos/twamp/client/probe-test-results/"
]

We allow specifying sensor group level reporting rate. To do this, specify the
reporting rate in Duration at the beginning of sensor paths / collection
name. For entries without reporting rate, we use configured sample frequency
sensors = [
"1000ms customReporting /interfaces /lldp",
"2000ms collection /components",
"/interfaces",
]

Optional TLS Config
 enable_tls = true
 #tls_ca = "/home/gts/streaming_telemetry/ca.pem"
tls_cert = "/etc/telegraf/cert.pem"
tls_key = "/etc/telegraf/key.pem"
Use TLS but skip chain & host verification
 insecure_skip_verify = true

Delay between retry attempts of failed RPC calls or streams. Defaults to
1000ms.
Failed streams/calls will not be retried if 0 is provided
 retry_delay = "1000ms"

To treat all string values as tags, set this to true
 str_as_tags = true

Figure 3.1: Telegraf Configuration

Takeaways for collecting streaming Juniper Openconfig telemetry data via Telegraf include:

• The collector can be configured to subscribe to a large list of data sources5
• Different reporting rates (depicting how frequently the data are pushed to the subscriber)

can be configured per monitoring metric.

5 https://www.juniper.net/documentation/en_US/junos/topics/reference/general/junos-telemetry-interface-
grpc-sensors.html

https://www.juniper.net/documentation/en_US/junos/topics/reference/general/junos-telemetry-interface-grpc-sensors.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/general/junos-telemetry-interface-grpc-sensors.html

 Streaming Telemetry Data Collection

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

20

• Custom names can be defined for the collected data

Especially for TWAMP related metrics, the collector can subscribe to the following paths:

Path Available Data
/junos/twamp/client/control-connection/ Data for the control connection of TWAMP

measurements from the client side
/junos/twamp/server/control-connection/ Data for the control connection of TWAMP

measurements from the server side
/junos/twamp/client/probe-test-results/ Data related to the TWAMP measurements e.g. RTT,

Jitter

Table 3.1: TWAMP metrics subscription paths

3.2 Cisco

As mentioned, Telegraf provides a unified interface to extract and store various data, including
telemetry data, from Cisco devices. An indicative Telegraf configuration file for Cisco Model-Driven
Telemetry (MDT) is provided in Figure 3.2. More information about MDT is available at the following
link.

Cisco model-driven telemetry (MDT) input plugin for IOS XR, IOS XE and NX-OS
platforms
 [[inputs.cisco_telemetry_mdt]]
Telemetry transport can be "tcp" or "grpc". TLS is only supported when
using the grpc transport.
 transport = "grpc"

Address and port to host telemetry listener
 service_address = ":57000"

Enable TLS; grpc transport only.
tls_cert = "/etc/telegraf/cert.pem"
tls_key = "/etc/telegraf/key.pem"

Enable TLS client authentication and define allowed CA certificates; grpc
transport only.
tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]

Define (for certain nested telemetry measurements with embedded tags) which
fields are tags
embedded_tags = ["Cisco-IOS-XR-qos-ma-oper:qos/interface-
table/interface/input/service-policy-names/service-policy-instance/statistics/class-
stats/class-name"]

Define aliases to map telemetry encoding paths to simple measurement names
 [inputs.cisco_telemetry_mdt.aliases]
 ifstats = "ietf-interfaces:interfaces-state/interface/statistics"

Figure 3.2: Telegraf Configuration

https://github.com/influxdata/telegraf/tree/master/plugins/inputs/cisco_telemetry_mdt

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

21

4 Interoperability and Experimental Results

In this section, an example is provided that uses all the technologies and techniques mentioned in
this document. The experiment described here had the following goals:

1. To test TWAMP interoperability between different vendors’ devices.
2. To test per-link network service performance and compare it to similar measurement

approaches, as employed by dedicated monitoring boxes.
3. To test the use of streaming telemetry for the collection of monitoring data.

4.1 Network and Infrastructure

The network used in the experiment was built on top of the GÉANT GTS infrastructure. The testbed
had 13 Ubuntu virtual machines:

• Hosts H1-H10 and Monitor running Ubuntu16.04.6 LTS
• A UoC machine which is an Ubuntu 18.04.5 LTS virtual service on Cisco CSR1000v
• Hosts c1 and c2 running Ubuntu 18.04.5 LTS
• vMX1-vMX6 – 6 Juniper virtual MX (vMX) routers running junOS version 19.3, 2
• VSI1 and VSI2 – virtual openvswitch switches
• XE1 and XE2 – 2 Cisco virtual routers (CSR1000v) running Cisco IOS XE Software Version

16.12.03,

It also included several redundant links between the devices as depicted in Figure 4.1.

Resources for the testbed are located in 4 GÉANT PoPs across Europe which allows for a realistic
evaluation of the obtained latency and jitter results, without the need to simulate network delays.
Intradomain routing between the vMX and Cisco routers was established using the Intermediate
System to Intermediate System (ISIS) protocol.

https://www.geant.org/Services/Connectivity_and_network/GTS

 Interoperability and Experimental Results

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

22

Figure 4.1: Interoperability testbed on GTS

All hosts H1-H10 had the perfSONAR-tools bundle installed including twping. The monitor virtual
machine also included the following software components:

• Telegraf v1.14.2
• Grafana v6.7.2
• InfluxDB v1.7.10

4.2 Experimental Evaluation

The path that was tested and used for the experiment was between the H1 and H5 virtual machines
and went through the Juniper vMX and Cisco XE devices, while at the endpoints H1 and H5 are
Ubuntu virtual machines. In order to test the per-segment performance parameters, a set of
measurements between the first hop (H1) and subsequent hops (vMX1, vMX3, XE1, H5) were
performed. Since latency is an additive parameter, in this way it is possible to notice if there is an
increase in the latency on some of the segments (e.g., by subtracting the one-way latency between
the H1-vMX3 and H1-vMX1 pairs it is possible to infer the latency on the vMX1-vMX3 link) which is
often an indication of congestion.

Host-to-host sessions rely on twping, part of the perfSONAR toolbox, while router-to-router sessions
are based on the TWAMP implementation on the Juniper and Cisco network devices. Host-to-router
tests were performed between the TWAMP software on Ubuntu (perfSONAR tools) and the TWAMP

 Interoperability and Experimental Results

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

23

implementations on the Juniper and Cisco routers. The team also tested the use of the perfSONAR
tools on a virtual machine installed as a virtual service on top of a Cisco router.

The results of the host-to-host and host-to-router TWAMP measurement were parsed and stored on
the TWAMP Client, e.g. for H1- vMX1 and H1 - H3 the TWAMP Client is H1. These were then
available after the TWAMP test was finished. For router-to-router sessions, the results were
continuously retrieved from the TWAMP Client Router (in these experiments, every 1s), thus
providing a high granularity of the monitored metrics.

The experiments performed focused on evaluating the monitoring services supported within
different network devices on identifying:

1. Link quality deterioration, and
2. Rerouting scenarios.

In order to compare the results of the monitoring features of network elements with the results
obtained from the measurements between the Linux hosts, the following TWAMP sessions were
initiated:

• vMX1 - vMX3 (Juniper TWAMP -> Juniper TWAMP)6
• vMX2 - vMX1 (Juniper TWAMP -> Juniper TWAMP)
• vMX3 - vMX4 (Juniper TWAMP -> Juniper TWAMP)
• vMX4 - vMX2 (Juniper TWAMP -> Juniper TWAMP)
• vMX3 - XE1 (Juniper TWAMP -> Cisco TWAMP)
• H1 - H3 (perfSONAR tools TWAMP -> perfSONAR tools TWAMP)
• H1 - H5 (perfSONAR tools TWAMP -> perfSONAR tools TWAMP)
• H1 - vMX1 (perfSONAR tools TWAMP -> Juniper TWAMP)
• H1 - vMX3 (perfSONAR tools TWAMP -> Juniper TWAMP)
• H1 - XE1 (perfSONAR tools TWAMP -> Cisco TWAMP)

In addition to those above, the team also successfully tested the following TWAMP sessions:

• perfSONAR tools TWAMP on Cisco VM -> Cisco TWAMP
• perfSONAR tools TWAMP on Cisco VM -> perfSONAR tools TWAMP
• perfSONAR tools TWAMP on Cisco VM -> Juniper TWAMP

The results of all these measurements initiated between the various combinations of TWAMP clients
and servers did not show any significant difference in the latency or jitter measurements between
the devices in the same nodes, regardless of the TWAMP client or server choice. This indicates that
all the TWAMP components tested are of similar reliability and accuracy.

6 The notation used to describe TWAMP sessions is (TWAMP client -> TWAMP server)

 Interoperability and Experimental Results

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

24

In order to model a real-life scenario in the European NREN networks, arbitrary delay and jitter were
introduced at these specific time windows:

15:00: Arbitrary delays are added using the tc tool on selected interfaces of the VS1 and VS2 devices:

• VS1 ens10: 20ms, ens6: 40ms
• VS2 ens6: 40ms, ens10: 60ms

15:10: Interface ens10 that connects vMX1 to VS1 is brought down and the traffic is redirected via
vMX1-vMX2-VS2-vMX4-vMX3.

15:20: The link (ens10 up) is restored and network traffic is rerouted via the path: vMX1-VS1-vMX3.

15:30: Delays are returned to their original values.

15:40: The Jitter is added to the vMX1 interface (vMX1->vMX3).

15:50: The Jitter is removed from the vMX1 interface.

Delay Measurements

Figure 4.2: Delay measurements

As illustrated in Figure 4.2, both TWAMP session measurements from host-to-host and router-to-
router provided the current state of the delay on each monitored path. At 15:10, a sharp increase in
the delay can be observed, that is identified by both approaches. Considering only the host-to-host
measurements, a sharp increase in the delay is observed between H1 and H3, which can be
attributed to either congestion issues or a rerouting case. Observing the router-to-router
measurements and specifically vMX1-vMX3, a sharp decrease in the delay can be seen that may infer
that the resulting increase is related to a problematic link that went down and a different path that
was chosen. At 15:20 the problematic link is restored and both approaches identify the decrease in

https://man7.org/linux/man-pages/man8/tc-netem.8.html

 Interoperability and Experimental Results

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

25

the delay between vMX1 and vMX3; this is also the case at 15:30. For the anomalies (sharp
increases/decreases) in delay and jitter, both approaches can pinpoint the direction (egress/ingress)
in which the problem/issue occurred.

Jitter Measurements

Figure 4.3: Jitter measurements

At 15:40 jitter was introduced in the vMX1 interface on the link between vMX1 and vMX3 (Figure
4.3). Similarly to what occurred with the delay results, it can be seen that the increased jitter is
identified by both approaches almost immediately. Notably, both approaches can show in which
direction the problem occurs. However, the router-to-router approach provides almost real-time
measurements (the current jitter value is collected each second), while in the host-to-host case, it is
necessary to wait for all the results to be retrieved by the TWAMP client. This means that for the
whole duration of a TWAMP test in the host-to-host case there is no information related to the
network state, so for example microbursts might be missed.

 Interoperability and Experimental Results

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

26

Host-to-Router Measurements

Figure 4.4: Host-to-router measurements

Finally, the host-to-host and router-to-router approaches can be mixed using a host-to-router
measurement approach. Hosts initiate TWAMP sessions with the router TWAMP servers. As
observed in Figure 4.4, this approach can also identify all the aforementioned anomalies that were
introduced for both delay and jitter.

Another set of experiments between H1 and XE1 was conducted in order to verify whether there
was any difference in the results obtained when the Cisco TWAMP server is used on XE1 compared
to the case where a virtual service with a perfSONAR-tools implementation of TWAMP is used on top
of XE1. No significant differences were observed indicating that both approaches give results of
similar accuracy. What should be taken into account is the fact that the XE1 router in both cases was
without any significant network traffic and CPU load.

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

27

5 Conclusions

This document gives an overview of the methods and technologies that could enable network
operators to build a network of active monitoring probes without adding any additional hardware in
their PoPs, an approach known as zero-footprint monitoring.

The reliability and interoperability of the different implementations of the RFC-based TWAMP
monitoring code have now reached levels that ensure accurate network service performance
evaluation even in multi-vendor environments. This means there is no longer a need to rely on the
proprietary performance evaluation systems provided by some vendors. Specifically, the key
conclusions that can be drawn from the tests presented here are:

• Router-to-router TWAMP measurement empowered by streaming telemetry provides fine-
grained real-time delay and jitter data.

• Host-to-host, host-to-router and router-to-router TWAMP sessions are capable of identifying
delay and jitter fluctuations, also pinpointing problematic directions.

• TWAMP is interoperable between Cisco, Juniper, Ubuntu hosts (with the TWAMP
implementation found in the perfSONAR suite) and an Ubuntu virtual service hosted on a
capable Cisco router (with the same TWAMP implementation).

• An insight into per-segment latency degradation can be obtained by using the approach
described in Section 4.2 where the performance parameters are measured between the first
hop on the path and all successive network hops.

• Monitoring software installed on an Ubuntu virtual service hosted on a Cisco router provides
reliable monitoring results.

In addition, streaming telemetry provides an efficient and now mature method for gathering
measurement results from devices without the need to poll devices periodically.

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

28

Appendix A YANG explorer – Looking for the Xpath

YANG Explorer is a tool developed by Cisco which at the time of writing is still in a beta version, and
which may never be made fully production-ready, as the latest changes in the code happened in
early 2019. However, this is still a useful tool to explore the capabilities of a device and to get the
xpaths of the specific variables that can be streamed towards a Collector (in a similar way one can
explore OIDs using a MIB browser). Installation is relatively straightforward as explained in the
instructions given on the GitHub page of the tool. The user interface is similar to the user interface
of MIB browsers: it contains the set of supported variables, their description and xpaths. Figure A.1
shows the key sections of the tool:

• An Explorer on the left-hand side, where YANG Models can be added to test their availability
and operation and explore their content.

• Device Settings in the middle where the parameters of the connection towards the router
can be set up. Also, in the Manage Models tab it is possible to add/compile new YANG
models to the Explorer section up to all those that the router supports.

• An Encoding section in the middle where YANG Explorer creates NetConf RPC, Python or YDK,
or RestConf RPC code for the dial-in requests, and an end Console section where the results
of the requests are displayed.

• A Property section on the right-hand side which shows the properties of the selected YANG
sections or variables (in this case capabilities requested for the router), and their xpath filter.

Figure A.1: YANG Explorer screen

https://github.com/CiscoDevNet/yang-explorer

 YANG explorer – Looking for the Xpath

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

29

Upon executing (Run button) the RPC message, the router returns the appropriate set of YANG-
NETCONF capabilities.

Similarly, it is possible to create a dial-in request for any variable or a branch in the YANG model
trees. Figure A.2 shows the RPC message that requests an interface description on a router.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter>
 <interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">
 <interface>
 <description/>
 </interface>
 </interfaces>
 </filter>
 </get>
</rpc>

Figure A.2: RPC message that requests an interface description on a router

Figure A.3 shows the returned response which includes description fields for all active interfaces.

<rpc-reply message-id="urn:uuid:bd05d6fd-2994-42fd-8cdd-1808f474f129"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">
 <interface>
 <description>MANAGEMENT</description>
 </interface>
 <interface>
 <description>H5</description>
 </interface>
 <interface>
 <description>to_XE2</description>
 </interface>
 </interfaces>
 </data>
</rpc-reply>

Figure A.3: Description fields of all active interfaces in the response

YANG explorer can also prepare RestConf requests, such as the one shown in Figure A.4, which asks
for state data for all interfaces.

{
 "method": "GET",
 "url": "/restconf/api/running/interfaces-state",
 "params": {
 "Content-type": "application/vnd.yang.data+json",
 "Accept": "application/vnd.yang.data+json,
application/vnd.yang.errors+json"
 },
 "data": {}
}

Figure A.4: RestConf request for the status of all interfaces

It is also possible to get Python code that can be used to subscribe to the data stream for a specific
set of variables as shown in Figure A.5.

 YANG explorer – Looking for the Xpath

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

30

"""
 Netconf python example by yang-explorer (https://github.com/CiscoDevNet/yang-
explorer)

 Installing python dependencies:
 > pip install lxml ncclient

 Running script: (save as example.py)
 > python example.py -a 172.16.0.82 -u USERNAME -p PASSWORD --port 830
"""

import lxml.etree as ET
from argparse import ArgumentParser
from ncclient import manager
from ncclient.operations import RPCError

payload = """
<filter xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <interfaces-state xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"/>
</filter>
"""

if __name__ == '__main__':

 parser = ArgumentParser(description='Usage:')

 # script arguments
 parser.add_argument('-a', '--host', type=str, required=True,
 help="Device IP address or Hostname")
 parser.add_argument('-u', '--username', type=str, required=True,
 help="Device Username (netconf agent username)")
 parser.add_argument('-p', '--password', type=str, required=True,
 help="Device Password (netconf agent password)")
 parser.add_argument('--port', type=int, default=830,
 help="Netconf agent port")
 args = parser.parse_args()

 # connect to netconf agent
 with manager.connect(host=args.host,
 port=args.port,
 username=args.username,
 password=args.password,
 timeout=90,
 hostkey_verify=False,
 device_params={'name': 'csr'}) as m:

 # execute netconf operation
 try:
 response = m.get(payload).xml
 data = ET.fromstring(response)
 except RPCError as e:
 data = e._raw

 # beautify output
 print(ET.tostring(data, pretty_print=True))

Figure A.5: Python code used to subscribe to the data stream for a specific set of variables

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

31

Appendix B Preparing an OVA Image for Cisco Virtual
Service Installation

Probably the most complex part of the virtual service installation, and certainly the least
documented, is the preparation of an appropriate virtual service image (OVA file). This Appendix
provides an example of the Ubuntu v18.04.5 LTS (bionic-server) virtual machine preparation, with
instructions based on the Ubuntu 18.04 LTS image for another Ubuntu 18.04 LTS computer.

1. Install KVM.
sudo apt install qemu-kvm libvirt-bin virtinst bridge-utils cpu-checker

2. Install the uv-tools package, a project providing easy tools for easy use of Ubuntu cloud images.
sudo apt install uvtool

3. Download the desired image (in our case Ubuntu 18.04 - bionic).
uvt-simplestreams-libvirt sync arch=amd64
uvt-simplestreams-libvirt --verbose sync --source http://cloud-
images.Ubuntu.com/daily release=bionic arch=amd64
uvt-simplestreams-libvirt query

4. Create SSH keys and run the new VM. In this example we are creating one VM with 1024MB
RAM, one virtual CPU and max 40GB disk. The default user on the machine is Ubuntu, and we
define the new password cisco.
ssh-keygen
uvt-kvm create bionic-server release=bionic arch=amd64 --memory 1024 --cpu 1 --
disk 40 --ssh-public-key-file ~/.ssh/id_rsa.pub --password cisco

5. Run the machine in VM manager and log in to it, either through the VM manager or via SSH (you
will need to get the IP address first).

6. Install the desired software (in our case the perfSONAR Tools bundle) and configure the VM
console connection which is required for the connection from the router to the virtual service.
For console connection, create (as the superuser) the file /etc/init/ttys0:
ttyS0 - getty

This service maintains a getty on ttyS0 from the point the system is
started until it is shut down again.

start on stopped rc RUNLEVEL=[12345]
stop on runlevel [!12345]

respawn
exec /sbin/getty -L 9600 ttyS0 vt102

7. Start ttyS0 with sudo start ttys0 and/or reboot the VM. After the reboot, a process like the one
below should be shown:

https://docs.perfsonar.net/install_debian.html

 Preparing an OVA Image for Cisco Virtual Service Installation

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

32

 783 ttyS0 Ss+ 0:00 /sbin/agetty -o -p -- \u --keep-baud 115200,38400,9600
ttyS0 vt220

8. Shut down the VM.

9. Create a directory where the Ubuntu image is going to be built (e.g. bionic-server.)

10. In that directory, convert the qcow file into qcow2 using the command below. In this example
the image of the previously prepared server was in /var/lib/uvtool/libvirt/images/, but on some
other systems the folder might differ.
sudo qemu-img convert -p -c -o compat=0.10 -O qcow2
/var/lib/uvtool/libvirt/images/bionic-server.qcow ./bionic-server.qcow2

11. In the same directory, create the package.yaml file:
manifest-version: 1.0

info:
 name: Ubuntu
 description: "KVM Ubuntu 18.04 LTS"
 version: 1.1

app:
 # Indicate app type (vm, paas, lxc etc.,)
 apptype: vm

 resources:
 cpu: 10
 memory: 1024000
 vcpu: 1

 disk:
 - target-dev: hdc
 file: bionic-server.qcow2

 interfaces:
 - target-dev: net1

 serial:
 - console
 - aux

 # Specify runtime and startup
 startup:
 runtime: kvm
 boot-dev: hd

12. In the same directory, create a file version.ver which should match the version in the
package.yaml file.
echo 1.0 > version.ver

13. Download the create_ova.sh file from here to the parent directory and give it exec privileges.

14. Run the script and wait for the OVA file to be finished:
./create_ova.sh -mts 200000 -mfs 100000 bionic-server

Copy the OVA file to the router where you want to install it (e.g. using SCP).

https://github.com/shabaz123/ServiceContainers/raw/master/templates.tar

Zero-Footprint Monitoring
Document ID: GN4-3-20-2727118

33

Glossary

CLI Command Line Interface
CPU Central Processing Unit
GBP Google Protocol Buffers
IP Internet Protocol
ISIS Intermediate System to Intermediate System
JTI Junos Telemetry Interface
KVM Kernel-based Virtual Machine
LTS Long Term Support
MDT Model-Driven Telemetry
MIB Management Information Base
NAT Network Address Translation
OID Object Identifier
OVA Open Virtual Application
OWAMP One-Way Active Measurement Protocol
PFE Packet Forwarding Engine
QoS Quality of Service
RE Routing Engine
RPC Remote Procedure Call
SLA Service Level Agreement
SNMP Simple Network Management Protocol
SSH Secure Shell
TWAMP Two Way Active Measurement Protocol
UDP User Datagram Protocol
VM Virtual Machine

	Executive Summary
	1 Introduction
	2 TWAMP Protocol
	2.1 Juniper TWAMP
	2.1.1 TWAMP Configuration
	2.1.2 Data Export
	2.1.2.1 SNMP polling
	Calculated Results Table ‘jnxTwampClientResultsCalculatedTable’

	2.1.2.2 Streaming Telemetry
	2.1.2.3 Router Configuration

	2.2 Cisco TWAMP and IP SLA
	2.2.1 Performance Monitoring Configuration
	2.2.1.1 TWAMP Responder Configuration

	2.2.2 Data Export
	2.2.2.1 Cisco Model-Driven Telemetry
	2.2.2.2 Enabling NETCONF
	2.2.2.3 Configuring Dial-Out Data Streaming

	2.2.3 Cisco Virtual Services
	Service VM configuration

	3 Streaming Telemetry Data Collection
	3.1 Juniper
	gRPC Sensors

	3.2 Cisco

	4 Interoperability and Experimental Results
	4.1 Network and Infrastructure
	4.2 Experimental Evaluation
	Delay Measurements
	Jitter Measurements
	Host-to-Router Measurements

	5 Conclusions
	Appendix A YANG explorer – Looking for the Xpath
	Appendix B Preparing an OVA Image for Cisco Virtual Service Installation
	Glossary

